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Background: The stochastic (linear) bandit problem for continuous
arm sets X is well-studied on the cumulative regret minimization
setting. However, existing research in the pure exploration setting is
sparse.

Objective: Efficiently compute an asymptotically optimal arm
sampling distribution (7;);>; on the arm set X.

Challenge 1: Such a sampling distribution involves optimization
over the space P(X) of probability measures on X', which can be
infinite dimensional

Challenge 2: And the objective function is non-smooth. Simply
applying existing methods for the finite-armed setting via
discretization would be computationally expensive.

Contribution: Assuming computation oracles for quadratic and
fractional quadratic objectives on the arm set, we propose a tractable
algorithm (in terms of the number of oracle calls) that achieves an
asymptotically optimal sampling distribution.

Problem Formulation
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We consider the e-BAI (best arm identification) problem with
Bayesian reward setting on a compact arm set X C R¢.

Reward function: Reward function f : X — R with
f(il:‘) — Hf i Qf ~ N(Od, 1d)-
Sampling Rule: For each round t =1, ..., a learner selects an arm

r; ~ Ty, and observes a random reward y; = f(x;) + w;y, where

l.i.d.
W v

(0, A?). We call (7)1 a sampling rule.

Posterior probability: Based on observations up to ¢, the posterior
mean u; : X — R and covariance matrix X; are defined (here,

Vii= Al + 22:1 v.x.). P;: the posterior probability measure
conditioned on F; ( conditioned on F;, fi(x) = 6; - x with

0 ~ N (11, 21)).

Recommendation Rule: (;: an estimation of an e-optimal arm at
round ¢t. Formally, ((;);>1: a sequence of F;-meas. X-valued R.V.

Objective: THe objective of the learner to miniize the posterior
probability P;((; € X* (¢)) of misidentification, where

X (€)= {x € X : f(x) > supeey f(€) — e}

Asymptotic analysis of posterior probability

Lemma 1. Assume lim; .., (; converges to (, € X*(€¢) a.s., and
limy—, () = f(x) a.s. for any x € X. Suppose infy>1 Apin(V (7)) > 0,
where T, := 7 ) .. 7. Then,

—%hm sup (T*(V(T2); Coo, ) < “ﬂi{}f%bg Py (G & X7 ()

t—00

<limsuplog P (G & X* (€)) < — liminf (I*(V/(7): G, /)

t—00 t—r00

» Here, for V € Ré*xd ¢ € X, and a function 1 : X — R, we define

12
(V5 ¢, p) = sup < Sl

cex (€+ p(C) — p(&))?

» Intuitively, this lemma implies that the posterior probability

P (G & X* (€)) exponentially decays as t increases, and its decay

rate is given as limy_oo (T*(V(T); Coos f))

Optimization Objective

» Lemma 1 indicates an asymptotically optimal sampling policy gives a
solution to the following optimization objective:

Tv(f;(x) = inf su Koo—fH%/(W)—l
Y50l ¥ cen (€ + [(Goo) — F(E))?

» This is an optimization problem over the space of probability measure
P(X), which can be infinite-dimensional in our setting.

» Due to the inner supremum, the objective can be non-smooth.

Proposed Method

Reparametrization

Design matrix

Sampling distribu- )
Vi, = V(m) € R4

tion m;, € P(X)

Update by PSGD

Reconstruction

by Alg. 2 D
4 Design matrix Vi

Sampling dis-
tribution ;4

Pseudo Code (simplified)

Algorithm 1 Main Algorithm

1: Initialize: 7 = meyp.

2 fort=1,2,..., do

3:  Play x; ~ m; and observe a noisy reward v;

4.V, = V(m) {Reparametrization 7; — V;.}

5. // Computation of a subgradient g, € R”“ of the objective
function at V.

// Update in the matrix space.

Wiv1 = Vi — migs.

// Approx. projection and distribution-reconstruction.
0: T < Algorithm 2 with W =W, 1, n = ny

10: end for
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Algorithm 2 Approximate Projection by the Frank-Wolfe Algorithm

Input: W € R™4 n > 1, 70 ¢ P(X), (7i)ix1
for:=1,2,...,ndo
a; = argmax,.y ¢ (W — V(7= D)z
70 = (1= )7V + 7id(a;)
end for
Output 7™

Main T heoretical Result

Theorem 1 (informal). (7;);>1 be the sampling rule of 1, and ((;);>1 be
a recommendation rule with (o, = lim;_,~, (; a.s. Under some assumptions
(e.g., |G — (|| = O(t™) with v > 0), the following holds:

1 1
tgrgozlogpt(gt QX* (6)) — QTE(f;Coo)

» Setting: X = {(cos(0),sin(d)): 0 € [0,0;]} C R? and

f(z) = (cos(0¢),sin(fy)) - x with 0 = am, 0y = 0,0, = br.

» Evaluation metric: (an upper bound of) Pi((; & X* (¢)) denoted
by py

» Baselines: Uniformly random (Uniform) and MVR [Vakili et al.,
2021]
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