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Overview
▶ Background: The stochastic (linear) bandit problem for continuous

arm sets X is well-studied on the cumulative regret minimization
setting. However, existing research in the pure exploration setting is
sparse.

▶ Objective: Efficiently compute an asymptotically optimal arm
sampling distribution (πt)t≥1 on the arm set X .

▶ Challenge 1: Such a sampling distribution involves optimization
over the space P(X ) of probability measures on X , which can be
infinite dimensional

▶ Challenge 2: And the objective function is non-smooth. Simply
applying existing methods for the finite-armed setting via
discretization would be computationally expensive.

▶ Contribution: Assuming computation oracles for quadratic and
fractional quadratic objectives on the arm set, we propose a tractable
algorithm (in terms of the number of oracle calls) that achieves an
asymptotically optimal sampling distribution.

Problem Formulation
▶ We consider the ϵ-BAI (best arm identification) problem with

Bayesian reward setting on a compact arm set X ⊂ Rd.
▶ Reward function: Reward function f : X → R with

f (x) = θf · x, θf ∼ N (0d, 1d).
▶ Sampling Rule: For each round t = 1, . . . , a learner selects an arm

xt ∼ πt, and observes a random reward yt = f (xt) + ωt, where
ωt

i.i.d.∼ N (0, λ2). We call (πt)t≥1 a sampling rule.
▶ Posterior probability: Based on observations up to t, the posterior

mean µt : X → R and covariance matrix Σt are defined (here,
Vt := λ1d +

∑t
s=1 xsx

⊤
s ). Pt: the posterior probability measure

conditioned on Ft ( conditioned on Ft, ft(x) = θt · x with
θt ∼ N (µt, Σ−1

t )).
▶ Recommendation Rule: ζt: an estimation of an ϵ-optimal arm at

round t. Formally, (ζt)t≥1: a sequence of Ft-meas. X -valued R.V.
▶ Objective: THe objective of the learner to miniize the posterior

probability Pt(ζt ̸∈ X ∗ (ϵ)) of misidentification, where
X ∗ (ϵ) := {x ∈ X : f (x) > supξ∈X f (ξ)− ϵ}.

Asymptotic analysis of posterior probability
Lemma 1. Assume limt→∞ ζt converges to ζ∞ ∈ X ∗ (ϵ) a.s., and
limt→ µt(x) = f (x) a.s. for any x ∈ X . Suppose inft≥1 λmin(V (πt)) > 0,
where πt := 1

t

∑t
s=1 πs. Then,

−1
2

lim sup
t→∞

(Γ∗(V (πt); ζ∞, f ))−1 ≤ lim inf
t→∞

1
t

log Pt (ζt ̸∈ X ∗ (ϵ))

≤ lim sup
t→∞

1
t

log Pt (ζt ̸∈ X ∗ (ϵ)) ≤ −1
2

lim inf
t→∞

(Γ∗(V (πt); ζ∞, f ))−1 .

▶ Here, for V ∈ Rd×d, ζ ∈ X , and a function µ : X → R, we define

Γ∗(V ; ζ, µ) := sup
ξ∈X

∥ζ − ξ∥2
V −1

(ϵ + µ(ζ)− µ(ξ))2.

▶ Intuitively, this lemma implies that the posterior probability
Pt (ζt ̸∈ X ∗ (ϵ)) exponentially decays as t increases, and its decay
rate is given as limt→∞ (Γ∗(V (πt); ζ∞, f ))−1.

Optimization Objective
▶ Lemma 1 indicates an asymptotically optimal sampling policy gives a

solution to the following optimization objective:

τ ∗X (f ; ζ∞) := inf
π∈P(X )

sup
ξ∈X

∥ζ∞ − ξ∥2
V (π)−1

(ϵ + f (ζ∞)− f (ξ))2.

▶ This is an optimization problem over the space of probability measure
P(X ), which can be infinite-dimensional in our setting.

▶ Due to the inner supremum, the objective can be non-smooth.

Proposed Method
Sampling distribu-
tion πt ∈ P(X )

Design matrix
Vt = V (πt) ∈ Rd×d

Sampling dis-
tribution πt+1

Design matrix Vt+1

Reparametrization

Update by PSGDReconstruction
by Alg. 2

Pseudo Code (simplified)
Algorithm 1 Main Algorithm

1: Initialize: π1 = πexp.
2: for t = 1, 2, . . . , do
3: Play xt ∼ πt and observe a noisy reward yt

4: Vt = V (πt) {Reparametrization πt 7→ Vt.}
5: // Computation of a subgradient gt ∈ Rd×d of the objective

function at Vt.
6: // Update in the matrix space.
7: Wt+1 = Vt − ηtgt.
8: // Approx. projection and distribution-reconstruction.
9: πt+1← Algorithm 2 with W = Wt+1, n = nt

10: end for

Algorithm 2 Approximate Projection by the Frank-Wolfe Algorithm
Input: W ∈ Rd×d, n ≥ 1, π̃(0) ∈ P(X ), (γi)i≥1
for i = 1, 2, . . . , n do

ai = argmaxx∈X x⊤(W − V (π̃(i−1)))x
π̃(i) = (1− γi)π̃(i−1) + γiδ(ai)

end for
Output π̃(n)

Main Theoretical Result
Theorem 1 (informal). (πt)t≥1 be the sampling rule of 1, and (ζt)t≥1 be
a recommendation rule with ζ∞ = limt→∞ ζt a.s. Under some assumptions
(e.g., ∥ζt − ζ∞∥ = O(t−ν) with ν > 0), the following holds:

lim
t→∞

1
t

log Pt(ζt ̸∈ X ∗ (ϵ)) = − 1
2τ ∗X (f ; ζ∞)

.

Experiments
▶ Setting: X = {(cos(θ), sin(θ)) : θ ∈ [0, θ1]} ⊂ R2, and

f (x) = (cos(θf), sin(θf)) · x with θf = aπ, θ0 = 0, θ1 = bπ.
▶ Evaluation metric: (an upper bound of) Pt(ζt ̸∈ X ∗ (ϵ)) denoted

by pt

▶ Baselines: Uniformly random (Uniform) and MVR [Vakili et al.,
2021]
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