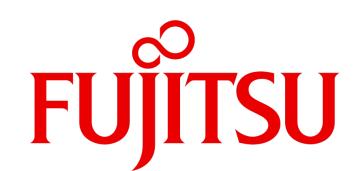


Instance-Optimal Pure Exploration for Linear Bandits on Continuous Arms



Sho Takemori 1 , Yuhei Umeda 1 , Aditya Gopalan 2 1: Fujitsu Limited, 2: Indian Institue of Science

Overview

- **Background:** The stochastic (linear) bandit problem for *continuous* arm sets \mathcal{X} is well-studied on the cumulative regret minimization setting. However, existing research in the *pure exploration* setting is sparse.
- ▶ **Objective:** Efficiently compute an asymptotically optimal arm sampling distribution $(\pi_t)_{t>1}$ on the arm set \mathcal{X} .
- ▶ Challenge 1: Such a sampling distribution involves optimization over the space $\mathcal{P}(\mathcal{X})$ of probability measures on \mathcal{X} , which can be infinite dimensional
- ► **Challenge 2:** And the objective function is *non-smooth*. Simply applying existing methods for the finite-armed setting via discretization would be computationally expensive.
- ► Contribution: Assuming computation oracles for quadratic and fractional quadratic objectives on the arm set, we propose a tractable algorithm (in terms of the number of oracle calls) that achieves an asymptotically optimal sampling distribution.

Problem Formulation

- ▶ We consider the ϵ -BAI (best arm identification) problem with Bayesian reward setting on a compact arm set $\mathcal{X} \subset \mathbb{R}^d$.
- ▶ Reward function: Reward function $f: \mathcal{X} \to \mathbb{R}$ with $f(x) = \theta_f \cdot x, \theta_f \sim \mathcal{N}(0_d, 1_d)$.
- ▶ **Sampling Rule:** For each round $t=1,\ldots$, a learner selects an arm $x_t \sim \pi_t$, and observes a random reward $y_t = f(x_t) + \omega_t$, where $\omega_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,\lambda^2)$. We call $(\pi_t)_{t\geq 1}$ a sampling rule.
- Posterior probability: Based on observations up to t, the posterior mean $\mu_t: \mathcal{X} \to \mathbb{R}$ and covariance matrix Σ_t are defined (here, $V_t := \lambda 1_d + \sum_{s=1}^t x_s x_s^{\top}$). P_t : the posterior probability measure conditioned on \mathcal{F}_t (conditioned on \mathcal{F}_t , $f_t(x) = \theta_t \cdot x$ with $\theta_t \sim \mathcal{N}(\mu_t, \Sigma_t^{-1})$).
- ▶ Recommendation Rule: ζ_t : an estimation of an ϵ -optimal arm at round t. Formally, $(\zeta_t)_{t\geq 1}$: a sequence of \mathcal{F}_t -meas. \mathcal{X} -valued R.V.
- ▶ **Objective:** The objective of the learner to miniize the posterior probability $P_t(\zeta_t \notin \mathcal{X}^*(\epsilon))$ of misidentification, where $\mathcal{X}^*(\epsilon) := \{x \in \mathcal{X} : f(x) > \sup_{\xi \in \mathcal{X}} f(\xi) \epsilon\}.$

Asymptotic analysis of posterior probability

Lemma 1. Assume $\lim_{t\to\infty} \zeta_t$ converges to $\zeta_\infty \in \mathcal{X}^*(\epsilon)$ a.s., and $\lim_{t\to} \mu_t(x) = f(x)$ a.s. for any $x \in \mathcal{X}$. Suppose $\inf_{t\geq 1} \lambda_{\min}(V(\overline{\pi}_t)) > 0$, where $\overline{\pi}_t := \frac{1}{t} \sum_{s=1}^t \pi_s$. Then,

$$-\frac{1}{2} \limsup_{t \to \infty} \left(\Gamma^*(V(\overline{\pi}_t); \zeta_{\infty}, f) \right)^{-1} \le \liminf_{t \to \infty} \frac{1}{t} \log P_t \left(\zeta_t \not\in \mathcal{X}^*(\epsilon) \right)$$

$$\le \limsup_{t \to \infty} \frac{1}{t} \log P_t \left(\zeta_t \not\in \mathcal{X}^*(\epsilon) \right) \le -\frac{1}{2} \liminf_{t \to \infty} \left(\Gamma^*(V(\overline{\pi}_t); \zeta_{\infty}, f) \right)^{-1}.$$

▶ Here, for $V \in \mathbb{R}^{d \times d}$, $\zeta \in \mathcal{X}$, and a function $\mu : \mathcal{X} \to \mathbb{R}$, we define

$$\Gamma^*(V;\zeta,\mu) := \sup_{\xi \in \mathcal{X}} \frac{\|\zeta - \xi\|_{V^{-1}}^2}{(\epsilon + \mu(\zeta) - \mu(\xi))^2}.$$

Intuitively, this lemma implies that the posterior probability $P_t\left(\zeta_t \not\in \mathcal{X}^*\left(\epsilon\right)\right)$ exponentially decays as t increases, and its decay rate is given as $\lim_{t\to\infty}\left(\Gamma^*(V(\overline{\pi}_t);\zeta_\infty,f)\right)^{-1}$.

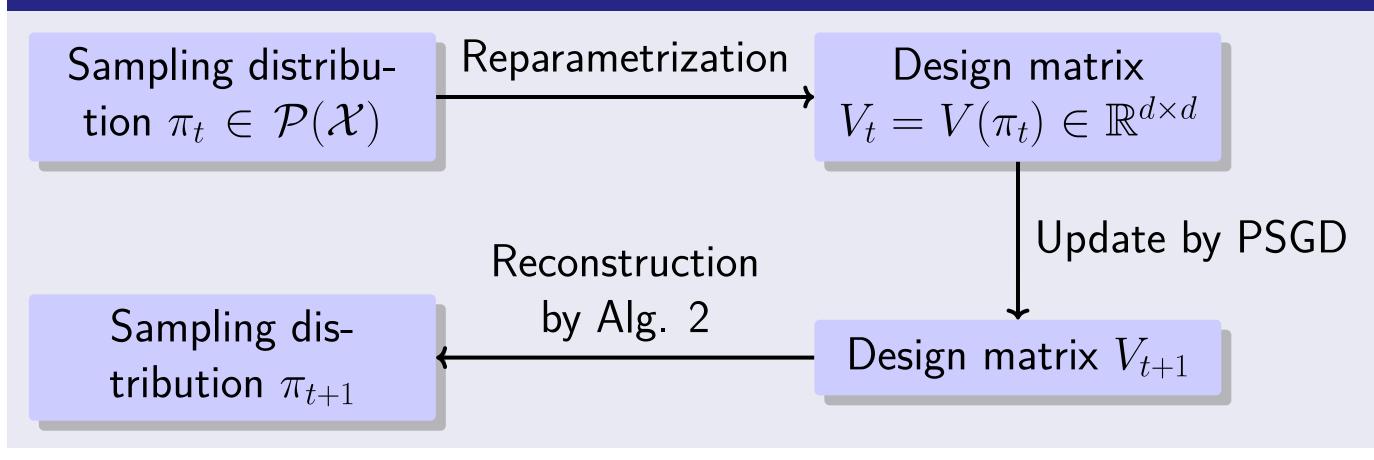
Optimization Objective

Lemma 1 indicates an asymptotically optimal sampling policy gives a solution to the following optimization objective:

$$\tau_{\mathcal{X}}^*(f;\zeta_{\infty}) := \inf_{\pi \in \mathcal{P}(\mathcal{X})} \sup_{\xi \in \mathcal{X}} \frac{\|\zeta_{\infty} - \xi\|_{V(\pi)^{-1}}^2}{(\epsilon + f(\zeta_{\infty}) - f(\xi))^2}.$$

- This is an optimization problem over the space of probability measure $\mathcal{P}(\mathcal{X})$, which can be infinite-dimensional in our setting.
- ▶ Due to the inner supremum, the objective can be non-smooth.

Proposed Method



Pseudo Code (simplified)

Algorithm 1 Main Algorithm

- 1: Initialize: $\pi_1 = \pi_{\mathrm{exp}}$.
- 2: **for** t = 1, 2, ..., do
- 3: Play $x_t \sim \pi_t$ and observe a noisy reward y_t
- 4: $V_t = V(\pi_t)$ {Reparametrization $\pi_t \mapsto V_t$.}
- // Computation of a subgradient $g_t \in \mathbb{R}^{d \times d}$ of the objective function at V_t .
- 6: // Update in the matrix space.
- $W_{t+1} = V_t \eta_t g_t.$
- // Approx. projection and distribution-reconstruction.
- 9: $\pi_{t+1} \leftarrow \mathsf{Algorithm} \ 2 \ \mathsf{with} \ W = W_{t+1}, n = n_t$
- 10: end for

Algorithm 2 Approximate Projection by the Frank-Wolfe Algorithm

Input:
$$W \in \mathbb{R}^{d \times d}$$
, $n \geq 1$, $\widetilde{\pi}^{(0)} \in \mathcal{P}(\mathcal{X}), (\gamma_i)_{i \geq 1}$

for
$$i = 1, 2, \ldots, n$$
 do

$$a_i = \operatorname{argmax}_{x \in \mathcal{X}} x^{\top} (W - V(\widetilde{\pi}^{(i-1)})) x$$

$$\widetilde{\pi}^{(i)} = (1 - \gamma_i) \widetilde{\pi}^{(i-1)} + \gamma_i \delta(a_i)$$

end for

Output $\widetilde{\pi}^{(n)}$

Main Theoretical Result

Theorem 1 (informal). $(\pi_t)_{t\geq 1}$ be the sampling rule of 1, and $(\zeta_t)_{t\geq 1}$ be a recommendation rule with $\zeta_{\infty} = \lim_{t\to\infty} \zeta_t$ a.s. Under some assumptions (e.g., $||\zeta_t - \zeta_{\infty}|| = O(t^{-\nu})$ with $\nu > 0$), the following holds:

$$\lim_{t \to \infty} \frac{1}{t} \log P_t(\zeta_t \not\in \mathcal{X}^*(\epsilon)) = -\frac{1}{2\tau_{\mathcal{X}}^*(f; \zeta_{\infty})}.$$

Experiments

- Setting: $\mathcal{X} = \{(\cos(\theta), \sin(\theta)) : \theta \in [0, \theta_1]\} \subset \mathbb{R}^2$, and $f(x) = (\cos(\theta_f), \sin(\theta_f)) \cdot x$ with $\theta_f = a\pi, \theta_0 = 0, \theta_1 = b\pi$.
- ▶ Evaluation metric: (an upper bound of) $P_t(\zeta_t \notin \mathcal{X}^*(\epsilon))$ denoted by p_t
- ► Baselines: Uniformly random (Uniform) and MVR [Vakili et al., 2021]

