The Canary's Echo: Auditing Privacy Risks of LLM-Generated Synthetic Text

ICML 2025

Matthieu Meeus^{1,2}, Lukas Wutschitz², Santiago Zanella-Béguelin², Shruti Tople² and Reza Shokri^{2,3}

Synthetic text data

Original, sensitive data

Similar utility, yet not directly traceable to any original record

Synthetic text	Label
'one of the most enjoyable romantic comedies of the year'	Positive
'if i 'm going to watch a three hour movie, i'd want it to be better than just good.'	Negative
'the only time when a remake of a classic is every bit as good as the original'	Positive

Use for downstream tasks

2

Finetune a pretrained LLM on the real data

Sample from the finetuned LLM

Auditing via Membership Inference Attacks (MIAs)

- While synthetic data is not directly traceable to original data, it does not mean it is free from any privacy risk.
- MIAs aim to infer if a given target sequence was part of the private dataset used to train a certain algorithm.

Canary

'When in comes times of turmoil... whats on sale and more important when, is best, this...'

Data-based MIAs

• We develop MIAs that do not rely on access to the model, but exclusively on the generated synthetic data.

Label

Canary

'When in comes times of turmoil... whats on sale and more important when, is best, this...'

Synthetic data

'one of the most enjoyable romantic comedies of the year'	Positive
'if i 'm going to watch a three hour movie , i'd want it to be better than just good.'	Negative
'the only time when a remake of a classic is every bit as good as the original'	Positive

Attacker to predict member or non-member based on:

N-gram: compute the loss of the canary using an n-gram model trained on the synthetic data.

Similarity: compute the mean similarity between the canary to the closest synthetic sequences.

Synthetic data leaks private information

- MIAs just based on synthetic data reach AUCs of 0.7+ (2-gram method works the best)
 - Synthetic data does leak private information!
 - To match the vulnerability of **model-based MIAs**, our data-only attacks need canaries to appear ~8 × more often in the training data.

	Canary injection		ROC AUC				
Dataset	Source	Label	Model $\mathcal{A}^{ heta}$		Synthetic $\mathcal{A}^{\widetilde{D}}$ (2-gram)	Synthetic $\mathcal{A}^{\widetilde{D}}$ (SIM _{Jac})	Synthetic $\mathcal{A}^{\widetilde{D}}$ (SIM _{emb})
	In-distribution ¹		0.911		0.741	0.602	0.586
SST-2	Synthetic	Natural Artificial	0.999 0.999		$0.620 \\ 0.682$	$0.547 \\ 0.552$	0.530 0.539
	In-distribution		0.993		0.676	0.590	0.565
AG News	Synthetic	Natural Artificial	0.996 0.999		$0.654 \\ 0.672$	$0.552 \\ 0.560$	$0.506 \\ 0.525$
SNLI	In-distribution	\mathbf{n}^1	0.892		0.718	0.644	0.630
	Synthetic	Natural Artificial	0.998 0.997		0.534 0.770	$0.486 \\ 0.602$	$0.488 \\ 0.571$

Traditional canaries fail for auditing synthetic data

- We vary the perplexity of the canaries we include;
- We find a novel trade-off
 - Model-based MIAs improve as canary perplexity increases.
 - Data-based MIAs work better for low perplexity, indistribution canaries.

While rare canaries are memorized more by the model, their signal does not echo through the generated text

A new canary design to audit synthetic text

- We propose a new canary design with
 - an in-distribution prefix F (more easily echoed through the synthetic data)
 - high-perplexity suffix (better memorized by the model)
- Canaries with an in-distribution prefix 0 < F < max
 work better for data-based MIAs!

Dataset	F	ROC AUC
SST-2	0 10 20 30 max	0.673 0.715 0.725 0.760 0.741
AG News	0 10 20 30 max	0.692 0.646 0.716 0.710 0.676

Conclusion

We propose an end-to-end pipeline to audit the privacy risks in LLM-generated synthetic text, with novel MIA techniques and optimal canaries.

We hope this enables making informed decisions about releasing synthetic data in practice.

More details in the paper!