

JHU

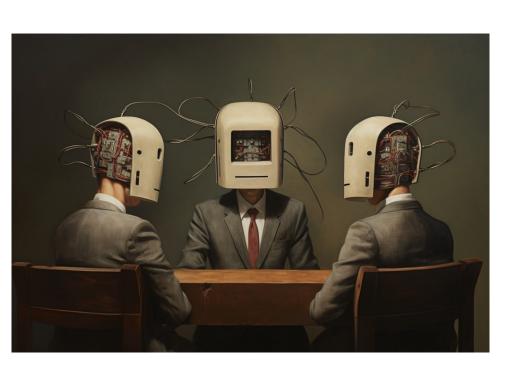
Jingchu Gai* CMU

Eric Mazumdar Yuejie Chi Caltech CMU

Adam Wierman Caltech

Background: Multi-Agent Reinforcement Learning (MARL)

• MARL: All agents are increasingly enmeshed in strategic human agent society



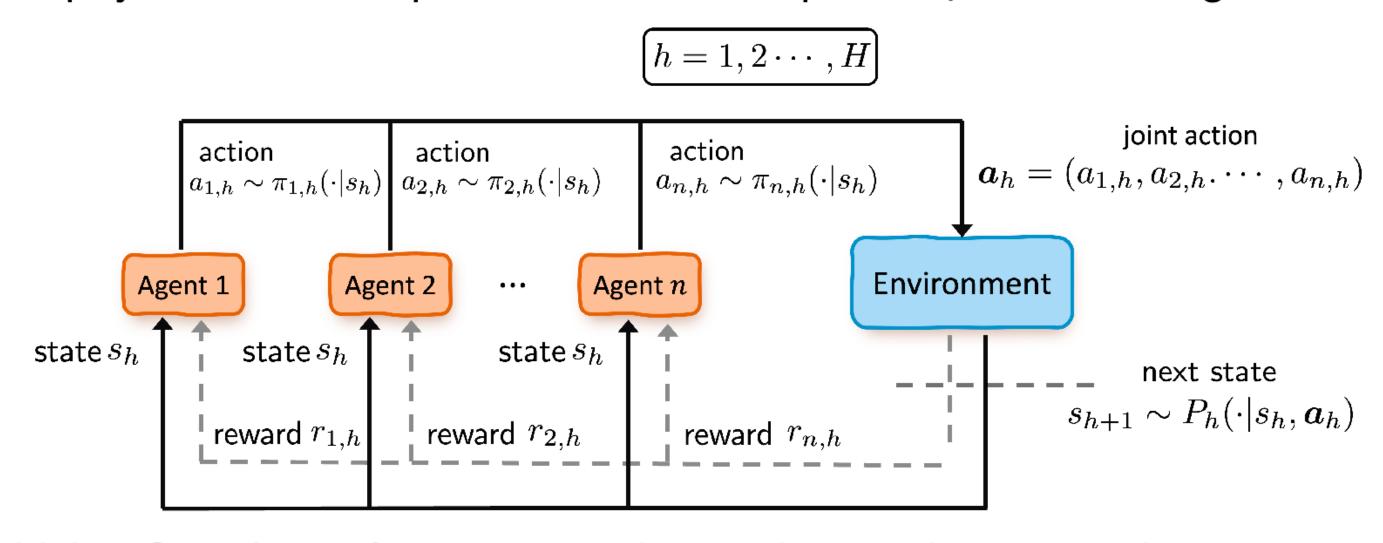
Autonomous driving

Human-Al collaboration

Multi-player games

Formulation: multi-player general-sum Markov games (MGs)

- n-player, finite state space S, finite action spaces A_i for the i-th agent.

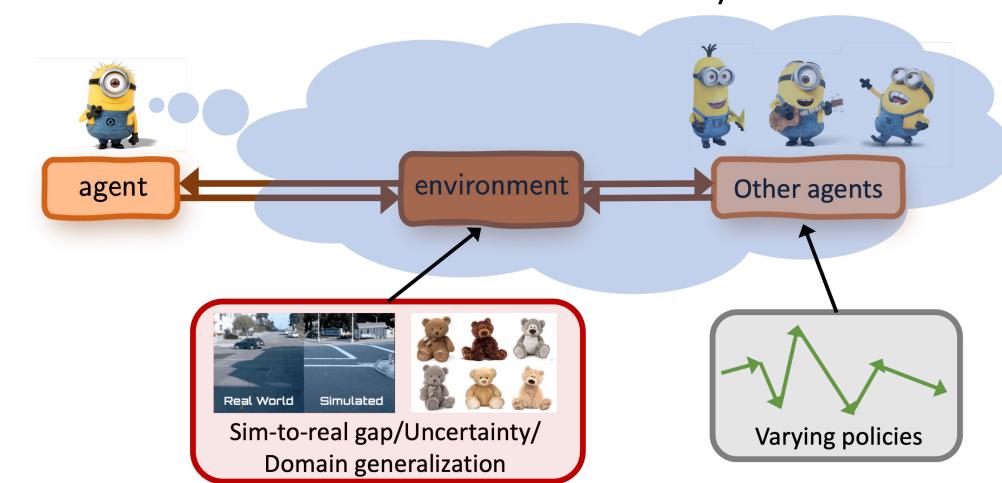


• Value functions: for any joint policy π , the cumulative reward is

$$orall (i,s) \in [n] imes \mathcal{S}: \quad V_{i,h}^{\pi,P}(s) := \mathbb{E}_{\pi,P} \left[\sum_{t=h}^{H} r_{i,t}ig(s_t,oldsymbol{a}_tig) \mid s_h = s
ight]$$

Robust MARL

 Robust MARL: promote robustness to environment shift and nonstationary of agents Nonstationary



- Formulation: robust MGs (RMGs) with uncertainty set $\mathcal{U}^{\sigma_i}_o(P^0,\cdot)$
 - \triangleright ρ : divergence function; σ_i : uncertainty set radius
 - > the transition kernel P is not fixed; vary within a prescribed uncertainty set determined by (possibly the current policy and) a nominal kernel P^0 (e.g., the training environment)
- \succ Robust value functions: $V_{i,h}^{\pi,\sigma_i}(s)\coloneqq \inf_{P\in\mathcal{U}_{\rho}^{\sigma_i}(P^0,\pi)}V_{i,h}^{\pi,P}(s)$
- Goal: find some game-theoretical equilibrium strategies:
- robust NE: a product policy $\pi: \mathcal{S} \times [H] \mapsto \prod_{1 \leq i \leq n} \Delta(\mathcal{A}_i)$ s.t. $V_{i,1}^{\pi,\sigma_i}(s) = \max_{\pi_i'} V_{i,1}^{\pi_i' \times \pi_{-i},\sigma_i}(s), \forall i,s \in \mathcal{S}$
- robust CCE: a joint policy $\pi: \mathcal{S} \times [H] \mapsto \Delta(\prod_{1 \le i \le n} \mathcal{A}_i)$ s.t. $V_{i,1}^{\pi,\sigma_i}(s) \ge \max_{\pi_i'} V_{i,1}^{\pi_i' \times \pi_{-i},\sigma_i}(s), \forall i,s$

Challenges of Robust MARL

- 1. Construction of realistic uncertainty sets: enabled by richness of robust MGs
- \triangleright Existing (s,a)-rectangular uncertainty set consider each agent's objective function using independent risk-aware outcome on each joint action

$$\mathbb{E}_{a_{-i}\in\pi_{-i}}[\mathbf{Risk}(V_{i,h}^{\pi.P}(a_i,\boldsymbol{a}_{-i})])$$

> Observations from behavioral economics [Goeree et al., 2005]: people often use a risk-aware metric outside of the expected outcome of other players' joint policy

$$\mathbf{Risk}(\mathbb{E}_{a_{-i}\in\pi_{-i}}[V_{i,h}^{\pi,P}(a_i,\boldsymbol{a}_{-i})])) \quad \checkmark$$

- 2. Data efficiency --- The curse of multiagency:
- P^0 is unknown, need data to query samples from P^0 for uncertainty set estimation
- The existing sample complexity requirement scales exponentially with the number of agents (using (s, a)-rectangular uncertainty set)

$$\widetilde{O}\left(\frac{H^3S\prod_{i=1}^n A_i}{\varepsilon^2} \min\left\{H, \frac{1}{\min_{1\leq i\leq n} \sigma_i}\right\}\right)$$

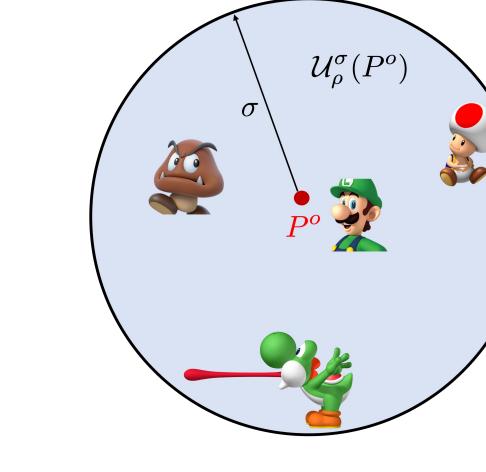
Robust MGs with Fictitious Uncertainty Sets

- **Expected nominal transition kernel:** for any joint policy $\pi: \mathcal{S} \times [H] \mapsto \Delta(\mathcal{A})$
- conditioned on: the i-th agent plays action a_i and others play $m{a}_{-i} \sim \pi_h(\cdot \, | \, s, a_i)$

$$\forall (h, s, a_i) \in [H] \times \mathcal{S} \times \mathcal{A}_i : \quad P_{h, s, a_i}^{\pi_{-i}} = \mathbb{E}_{\boldsymbol{a} \sim \pi_h(\cdot \mid s, a_i)} \left[P_{h, s, a_i}^0 \right] = \sum_{\boldsymbol{a}_{-i} \in \mathcal{A}_{-i}} \frac{\pi_h(a_i, \boldsymbol{a}_{-i} \mid s)}{\pi_{i, h}(a_i \mid s)} \left[P_{h, s, a}^0 \right]$$

Fictitious uncertainty set:

$$\begin{aligned} &\textit{Others-integrated } (s, a_i) \textit{-rectangular set} \\ &\forall i \in [n]: \ \mathcal{U}^{\sigma_i}_{\rho}(P^0, \pi) \coloneqq \otimes \mathcal{U}^{\sigma_i}_{\rho}\left(P^{\pi_{-i}}_{h, s, a_i}\right), \\ &\mathcal{U}^{\sigma_i}_{\rho}\left(P^{\pi_{-i}}_{h, s, a_i}\right) \coloneqq \left\{P \in \Delta(\mathcal{S}): \rho\left(P, P^{\pi_{-i}}_{h, s, a_i}\right) \leq \sigma_i\right\} \end{aligned}$$



- For i-th agent and each (s, a_i), the uncertainty set $\mathcal{U}_{\rho}^{\sigma_i}\left(P_{h,s,a_i}^{\pi_{-i}}\right)$ is a ball around the expected nominal transition kernel $P_{h,s,a_i}^{\pi-i}$
- Why fictitious uncertainty set
 - Realistic and predictive of human decisions in comparisons to prior works using (s, a)rectangular set (others-separated uncertainty set)

$$\mathcal{U}^{\sigma_i}_{\rho}(P^0) := \otimes \mathcal{U}^{\sigma_i}(P^0_{h,s,\mathbf{a}}), \quad \text{where} \quad \mathcal{U}^{\sigma_i}_{\rho}(P^0_{h,s,\mathbf{a}}) = \left\{ P_{h,s,\mathbf{a}} \in \Delta(\mathcal{S}) : \rho(P_{h,s,\mathbf{a}}, P^0_{h,s,\mathbf{a}}) \le \sigma_i \right\}$$

- A natural adaptation from single-agent robust RL: Fixing other agents' policy π_i , from the viewpoint of the individual I, RMGs with fictitious uncertainty set degrades to a single-agent robust RL problem
- Properties of RMGs with fictitious uncertainty set

Theorem 1: Existence of robust NE, CCE, and CE

This Work: design Robust MGs with realistic uncertainty sets and sample complexity guarantees breaking the curse of multiagency

Breaking Curse of Multiagency of Sample Complexity

- Setting:
- Using total variation (TV) as ρ : $\forall P, P' \in \Delta(\mathcal{S})$: $\rho_{\mathsf{TV}}(P, P') \coloneqq \frac{1}{2} \|P P'\|_1$
- Data collection mechanism: a generative model for the true nominal kernel P^0

$$s_{h,s,a}^{i} \stackrel{i.i.d}{\sim} P_{h}^{0}(\cdot \mid s, a), \qquad i = 1, 2, \dots$$

• Goal: find an ε -approximate robust-CCE ξ , i.e.,

$$\mathsf{gap}_\mathsf{CCE}(\xi) \coloneqq \max_{s \in \mathcal{S}, 1 \leq i \leq n} \left\{ \mathbb{E}_{\pi \sim \xi} \left[V_{i,1}^{\star, \pi_{-i}, \sigma_i}(s) \right] - \mathbb{E}_{\pi \sim \xi} \left[V_{i,1}^{\pi, \sigma_i}(s) \right] \right\} \leq \varepsilon$$

- Algorithm design: Robust-Q-FTRL
 - Using tailored online adversarial learning algorithm: tailored FTRL
- > Using N-sample estimation for empirical kernel and robust Q-function:
 - > Handle additional optimization vs statistical challenges

Theorem 2: upper bound with breaking curse of multiagency

Using the TV distance, for any RMGs with fictitious uncertainty set and any $\varepsilon \leq \sqrt{\min\{H, \frac{1}{\min_{1 \leq i \leq n} \sigma_i}\}}$ robust-Q-FTRL can output an ε -approximate robust-CCE $\hat{\xi}$ as long as the total number of samples acquired in the learning process exceeds

$$\widetilde{O}\left(\frac{SH^6\sum_{1\leq i\leq n}A_i}{\epsilon^4}\min\left\{H,\frac{1}{\min_{1\leq i\leq n}\sigma_i}\right\}\right)$$

- Discussions

• Lower bound:
$$\widetilde{O}\left(\frac{SH^3\max_{1\leq i\leq n}A_i}{\varepsilon^2}\min\left\{H,\frac{1}{\min_{1\leq i\leq n}\sigma_i}\right\}\right)$$

Comparisons with prior works on general RMGs

Algorithm	Uncertainty set	Equilibria	Sample complexity
P^2MPO	(s, \boldsymbol{a}) -rectangularity	robust NE	$S^4 \left(\prod_{i=1}^n A_i\right)^3 H^4/\varepsilon^2$
(Blanchet et al., 2024)		TODUST TVL	$\bigcup_{i=1}^{D} (\prod_{i=1}^{I} A_i) \prod_{i=1}^{I} A_i$
DR-NVI	(s, \boldsymbol{a}) -rectangularity	${\rm robust\ NE/CE/CCE}$	$\frac{SH^3 \prod_{i=1}^n A_i}{\varepsilon^2} \min \left\{ H, \frac{1}{\min_{1 \le i \le n} \sigma_i} \right\}$
(Shi et al., 2024)			
Robust-Q-FTRL	fictitious	robust CCE	$\frac{SH^6 \sum_{1 \le i \le n} A_i}{\varepsilon^4} \min \left\{ H, \frac{1}{\min_{1 \le i \le n} \sigma_i} \right\}$
(this work)	(s, a_i) -rectangularity		

 Technical insights: Prior approaches for breaking curse in standard MARL can't apply rely on linear value functions (w.r.t. transition kernel) for error cancellation, but RMGs' nonlinearity prevent this. There is a tradeoff between statistical (data) efficiency and tight regret bound in online optimization induced by nonlinearity.