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Background: Multi-Agent Reinforcement Learning (MARL)

* MARL: Al agents are increasingly enmeshed in strategic human agent society

Armed with traffic cones, protesters are
m immobilizing driverless cars

Autonomous driving Human-Al collaboration

Multi-player games

* Formulation: multi-player general-sum Markov games (MGs)

- n-player, finite state space S, finite action spaces A; for the i-th agent.
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o Value functions: for any joint policy 7, the cumulative reward is
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Robust MARL

* Robust MARL: promote robustness to environment shift and nonstationary of

agents Nonstationary
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Varying policies

» Formulation: robust MGs (RMGs) with uncertainty set {7 (P°, -)
» p: divergence function; og;: uncertainty set radius
» the transition kernel P is not fixed; vary within a prescribed uncertainty set

determined by (possibly the current policy and) a nominal kernel P° (e.g., the training
environment)

» Robust value functions: VL-W;LW(S) = inf
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* Goal: find some game-theoretical equilibrium strategies:

— robust NE: a product policy 7 : S x [H] = []1<;j<,, A(A;) sit. V5% (s) = max ‘/ffxw_i’ai(s),‘v’i, S

— robust CCE: a joint policy 7 : S x [H] — A(]T1<ij<nAi) st V;Wl’gi(s) > max, V.ﬂ,'xw""gi(s),‘v’z’, S
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Challenges of Robust MARL

* 1. Construction of realistic uncertainty sets: enabled by richness of robust MGs
» Existing (s, a)-rectangular uncertainty set consider each agent’s objective function
using independent risk-aware outcome on each joint action
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» Observations from behavioral economics [Goeree et al., 2005]: people often use a
risk-aware metric outside of the expected outcome of other players’ joint policy
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» 2. Data efficiency --- The curse of multiagency:

« P%isunknown, need data to query samples from P° for uncertainty set estimation

* The existing sample complexity requirement scales exponentially with the number of
agents (using (s, a)-rectangular uncertainty set )
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Robust MGs with Fictitious Uncertainty Sets

« Expected nominal transition kernel: for any joint policy 7 : S x [H] — A(A)
» conditioned on: the i-th agent plays action a; and others play a_; ~ 7 (- | s, a;)

v(hasva’i) S [H] XxSxAi: Pyl = ]anvrh('|8,ai) [Pi(z),s,a] —
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* Fictitious uncertainty set:
4 )
Others-integrated (s, a;)-rectangular set
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» Fori-th agent and each (s, a;), the uncertainty set U (P;f;a)
is a ball around the expected nominal transition kernel Py, ;..

* Why fictitious uncertainty set

» Realistic and predictive of human decisions in comparisons to prior works using (s, a)-
rectangular set (others-separated uncertainty set)

Uy (P°) := QU (P}?,S,a), where U (Pf?,s,a) ={Phsa € A(S): p(Ph,s,aan?,s,a) < 0;}

» A natural adaptation from single-agent robust RL: Fixing other agents’ policy 7;, from

the viewpoint of the individual I, RMGs with fictitious uncertainty set degrades to a
single-agent robust RL problem

* Properties of RMGs with fictitious uncertainty set

Theorem 1: Existence of robust NE, CCE, and CE
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This Work: desigh Robust MGs with realistic uncertainty sets and
sample complexity guarantees breaking the curse of multiagency

Breaking Curse of Multiagency of Sample Complexity

* Setting: !
* Using total variation (TV) as p: VP, P' € A(S):  prv (P, P) =S ||[P — Pl

» Data collection mechanism: a generative model for the true nominal kernel P°
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s%,s,a ~ Pr(-]s,a), i =1,2,...

* Goal: find an g-approximate robust-CCE ¢, i.e.,

gapcce(§) = seér'fllaé)égn{ D [Vgl,w_i,aq;(s)] — Erne [V:rla (s)]} <e¢€

* Algorithm design: Robust-Q-FTRL

» Using tailored online adversarial learning algorithm: tailored FTRL
» Using N-sample estimation for empirical kernel and robust Q-function:
» Handle additional optimization vs statistical challenges
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Theorem 2: upper bound with breaking curse of multiagency
Using the TV distance, for any RMGs with fictitious uncertainty set and any - < \/min{H,

robust-Q-FTRL can output an s-approximate robust-CCE € as long as the total number of
samples acquired in the learning process exceeds
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e Discussions

 Lower bound: 5 (5}]3 maxi<;<n A;
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 Comparisons with prior works on general RMGs
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* Technical insights: Prior approaches for breaking curse in standard MARL can’t
apply rely on linear value functions (w.r.t. transition kernel) for error
cancellation, but RMGs’ nonlinearity prevent this. There is a tradeoff between

statistical (data) efficiency and tight regret bound in online optimization
induced by nonlinearity.



