

An Optimistic Algorithm for online CMDPS with Anytime Adversarial Constraints

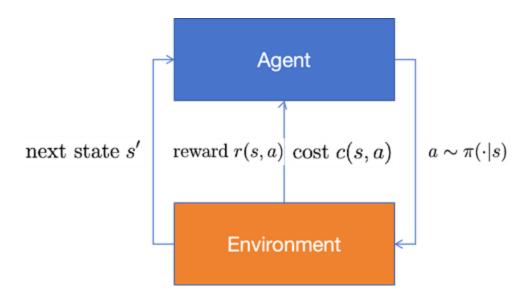
Jiahui Zhu¹, Kihyun Yu², Dabeen Lee², Xin Liu³, Honghao Wei¹

¹School of Electrical Engineering and Computer Science, Washington State University ²Department of Industrial & Systems Engineering, KAIST ³School of Information Science & Technology, ShanghaiTech University

Constrained MDPs Notation_[1]:

μ	Initial state distribution
S	State space (finite, $ S = S$)
${\mathcal A}$	Action space (finite, $ A = A$)
Н	Episode horizon length
${\cal P}_{ m h}$	Transition kernel $\mathcal{P}_h(s' s,a)$: $\mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0,1]$
r_{k}	Reward vector $(r_{\{k, 1\}} \dots r_{\{k, H\}}); r_{\{k, h\}}: S \times A \rightarrow [0, 1]$
$d_{\mathbf{k}}$	Cost vector $(d_{\{k, 1\}} \dots d_{\{k, H\}}); d_{\{k, h\}}: S \times A \rightarrow [-1, 1]$
Rewards	Stochastic — r_k i.i.d. from fixed distribution R
Costs (Stochastic)	d _k i.i.d. from fixed distribution D
Costs (Adversarial)	d _k chosen online by adversary
Policy π	$\pi = {\pi_1 \dots \pi_H}, \pi_h(\cdot s) \in \Delta(\mathcal{A})$

Constrained MDPs Definition_[1]:



Given a policy π , we use $V^{\pi}(r_k, p)$ and $V^{\pi}(d_k, p)$ to denote the expected cumulative reward and cost under policy π , starting from state s_1 :

$$V^{\pi}(r_k, p) \coloneqq \mathbb{E}\left[\sum_{h=1}^{H} r_{k,h}(s_h, a_h) | s_1, \pi, p\right], \quad V^{\pi}(d_k, p) \coloneqq \mathbb{E}\left[\sum_{h=1}^{H} d_{k,h}(s_h, a_h) | s_1, \pi, p\right]$$

Optimization Problem

The objective for Constrained MDPs is to find a policy $\pi: \mathcal{S} \to \Delta(\mathcal{A})$ ($\Delta(\cdot)$ is a probability simplex) to maximize the expected cumulative rewards while satisfying constraints under both settings:

$$\pi^* \in argmax \ V^{\pi}(\bar{r}, p), \qquad s.t. \ V^{\pi}(\bar{d}, p) \leq 0 \ (stochastic \ cost)$$

$$s.t. \ V^{\pi}(d_k, p) \leq 0, \forall \ k \in [K] \ (adversaril \ cost)$$

where $\bar{r} \coloneqq \mathbb{E}_{r \sim R}[r]$, $\bar{d} \coloneqq \mathbb{E}_{d \sim D}[d]$. And the goal of the online Constrained MDPs problem is to learn an optimal policy to minimize the cumulative regret and strong cumulative violation of constraints after K episodes, which are defined below:

$$Regret(K) = \sum_{k=1}^{K} [V^{\pi^*}(\bar{r}, p) - V^{\pi^k}(\bar{r}, p)]$$

$$Violation(K) = \sum_{k=1}^{K} [V^{\pi^k}(\bar{d}, p)]^+ (stochastic cost)$$

$$Violation(K) = \sum_{k=1}^{K} [V^{\pi^k}(d_k, p)]^+ (adversarial cost)$$

Optimization Problem

Alternatively, the original optimization problem can be naturally reformulated a LP with the occupancy measure $\{q_h^{\pi}(s, a, s')\}_{h=1}^{H}$ [1]:

$$\max_{q \in Q} \bar{r}^T q \qquad s.t. \ \bar{d}^T q \le 0 \ (stochastic \ cost)$$
$$s.t. \ d_k^T q \le 0, \forall \ k \in [K] (adversarial \ cost)$$

where $q \in [0,1]^{SAH}$ is the occupancy measure vector and Q is the set of all valid occupancy measures; $\overline{r} \in [0,1]^{SAH}$, $\overline{d} \in [0,1]^{SAH}$ and $d_k \in [0,1]^{SAH}$. And the policy can be reconstructed as:

$$\pi_s^q(a|s) = \frac{q_h(s,a)}{\sum_{a'} q_h(s,a')}$$

To foster exploration in the unknown model, we adopt the principle of optimistic estimation [2], we define the empirical rewards \hat{r}_h^{k-1} , costs \hat{d}_h^{k-1} and transition kernels \hat{p}_h^{k-1} , then we can construct the optimistic estimates for $\tilde{r}_{k,h}$, $\tilde{d}_{k,h}$ and optimistic occupancy measure set Q.

^[1] Altman, Eitan. Constrained Markov decision processes. Routledge, 2021

^[2] Auer, Peter, Thomas Jaksch, and Ronald Ortner. "Near-optimal regret bounds for reinforcement learning." Advances in neural information processing systems 21 (2008).

Algorithm: Surrogate Objective Function

We define the following surrogate objective function with exponential potential Lyapunov function:

$$f_{k}(q) = \alpha \left(-\tilde{r}_{k}^{T}q + \Phi'(\lambda_{k}) \left[\tilde{d}_{k}^{T}q \right]^{+} \right) - \frac{1}{2} \|q - q_{k}\|^{2}, \Phi'(x) = \exp(\beta x) - 1, \lambda_{k} = \lambda_{k-1} + \alpha \left[\tilde{d}_{k}^{T}q_{k} \right]^{+}$$

Exponential Lyapunov function Benefits:

- Tracks long-term constraint violations
- Encourages adaptive safe exploration
- Penalizes positively violated constraints

Moreover, this objective function design enables us to jointly bound the cumulative regret and constraint violation:

$$\Phi(\lambda_K) + \alpha \sum_{k=1}^K (\tilde{r}_k^T q^* - \tilde{r}_k^T q_k) \le \sum_{k=1}^K (f_k(q_k) - f_k(q^*))$$

Thus, this relationship motivates the design of algorithms aimed at minimizing regret $\sum_{k=1}^{K} (f_k(q_k) - f_k(q^*))$.

Algorithm: Optimistic Online Mirror Descent

To minimize regret $\sum_{k=1}^{K} (f_k(q_k) - f_k(q^*))$, we adopt the Optimistic Online Mirror Descent algorithm:

Optimistic Phase: Predicts next occupancy measure using current gradient

$$\hat{q}_{k+1} = \arg\min_{q \in Q_k} \eta_k \langle q, \nabla f_k(q_k) \rangle + \mathcal{D}(q, \hat{q}_k)$$

ullet Refinement Phase: Refines occupancy measure using predicted \hat{q}_{k+1}

$$q_{k+1} = arg\min_{q \in Q_k} \eta_{k+1} \langle q, \nabla \hat{f}_{k+1} \left(\hat{q}_{k+1} \right) \rangle + \mathcal{D}(q, \hat{q}_{k+1})$$

The **optimistic update mechanism** plays a critical role in tightening performance bounds by integrating historical gradients and occupancy information. Once q_{k+1} is computed, we construct the policy π_{k+1} , execute it, and estimate the reward, cost, and transition kernel.

Theoretical Results

Algorithm	Regret	Adversarial Violation	Stochastic Violation	Slater's Condition	Known Safe Policy
[1]	$O(\sqrt{K})$	N/A	$O(\sqrt{K})$	<u>~</u>	No
[2]	$O(\sqrt{K})$	N/A	$O(\sqrt{K})$	~	Yes
[3]	$\widetilde{O}(\sqrt{K})$	N/A	$\widetilde{O}(\sqrt{K})$	~	No
[4]	$\widetilde{O}(K^{0.93})$	N/A	$\widetilde{\mathrm{O}}(K^{0.93})$	~	No
[5]	$\widetilde{O}(K^{\frac{6}{7}})$	N/A	$\widetilde{\mathrm{O}}(K^{\frac{6}{7}})$	~	No
Ours	$\widetilde{O}(\sqrt{K})$	$\widetilde{O}(\sqrt{K})$	$\widetilde{O}(\sqrt{K})$	×	No

Our Algorithm can obtain the following theoretical results:

$$Regret(K) \leq \widetilde{O}\left(\sqrt{NSAH^3K} + S^2AH^3 + \sqrt{C}\sqrt{SAHK} + SAH\right)$$

$$Violation(K) \leq \widetilde{O}(\sqrt{NSAH^3K} + S^2AH^3 + \sqrt{C}\sqrt{SAHK} + SAH) \text{(both constraint settings)}$$

- [1] Efroni, Yonathan, Shie Mannor, and Matteo Pirotta. "Exploration-exploitation in constrained mdps." arXiv preprint arXiv:2003.02189 (2020).
- [2] Müller, Adrian, Pragnya Alatur, Giorgia Ramponi, and Niao He. "Cancellation-free regret bounds for lagrangian approaches in constrained markov decision processes." arXiv preprint arXiv:2306.07001 (2023).
- [3] Stradi, Francesco Emanuele, Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. "Optimal Strong Regret and Violation in Constrained MDPs via Policy Optimization." arXiv preprint arXiv:2410.02275 (2024).
- [4] Müller, Adrian, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. "Truly no-regret learning in constrained mdps." arXiv preprint arXiv:2402.15776 (2024).
- [5] Kitamura, T., Kozuno, T., Kato, M., Ichihara, Y., Nishimori, S., Sannai, A., Sonoda, S., Kumagai, W. and Matsuo, Y., 2024. A policy gradient primal-dual algorithm for constrained mdps with uniform pac guarantees. arXiv preprint arXiv:2401.17780.

Theoretical Results

Ours

 $\widetilde{O}(\sqrt{K})$

Algorithm	Regret	Adversarial Violation	Stochastic Violation	Slater's Condition	Known Safe Policy	
[1]	$O(\sqrt{K})$	N/A	$O(\sqrt{K})$	~	No	
[2]	$O(\sqrt{K})$	N/A	$O(\sqrt{K})$	<u>~</u>	Yes	
[3]	$\widetilde{\mathrm{O}}(\sqrt{K})$	N/A	$\widetilde{O}(\sqrt{K})$	<u>~</u>	No	
[4]	$\widetilde{\mathrm{O}}(K^{0.93})$	N/A	$\widetilde{\mathrm{O}}(K^{0.93})$	✓	No	
[5]	$\widetilde{O}(K^{\frac{6}{7}})$	N/A	$\widetilde{O}(K^{\frac{6}{7}})$	<u>~</u>	No	

 $\widetilde{O}(\sqrt{K})$

• We establish optimal $\widetilde{O}(\sqrt{K})$ regret and constraint violation bounds under minimal assumptions: No Slater's Condition and No Known Safe Policy required.

 $\widetilde{O}(\sqrt{K})$

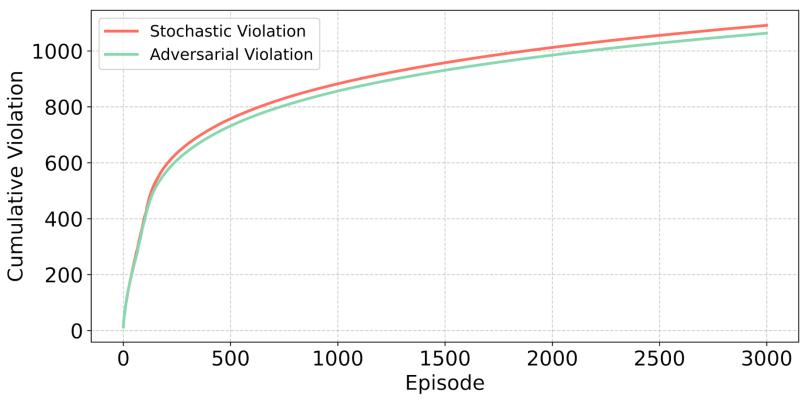
- This is the **first result** achieving optimal order in total episodes K for **online CMDPs with anytime** adversarial constraints.
- Furthermore, when a **generative model** (i.e., a perfect simulator) is available, the regret can be tightly bounded by O(1).

On Machine Learning

No

×

Experiment Results



We test the algorithm in a synthetic, finite-horizon CMDP with 5 states, 3 actions, horizon H = 5, Dirichlet($\alpha = 0.5$) transitions, uniform rewards, and either stochastic costs (uniform in [-1,1]) or adversarial costs drawn each episode from $\{-1.0, -0.6, -0.2, 0, 0.2, 0.6, 1.0\}$. The initial state is chosen uniformly and the cumulative-cost constraint is fixed at 0; we measure cumulative constraint violation over K = 3000 episodes.

Conclusion

- OMDPD algorithm: First method to handle online safe RL with anytime adversarial constraints—no Slater condition or pre-known safe policy required.
- Optimal guarantees: Provably achieves $\widetilde{O}\left(\sqrt{K}\right)$ bounds on both regret and strong constraint violation.
- **Broader impact**: Advances CMDP theory and offers a robust blueprint for safe decision-making in dynamic, adversarial environments.

Paper Link: https://arxiv.org/pdf/2505.21841

Thanks for your listening!