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“ Initial state distribution

S State space (finite, |S| = S)

A Action space (finite, |A| = A)

H Episode horizon length

Px Transition kernel Py(s’'|s,a): SxAxS = [0,1]

e Reward vector (ry 4 ... Fy ) e ny: SxeA = [0,1]

dx Cost vector (dy 1 ... dg 1y); dyg py: SxA = [-1,1]

Rewards Stochastic — r i.i.d. from fixed distribution R

Costs (Stochastic) dy i.i.d. from fixed distribution D
Costs (Adversarial) dy chosen online by adversary

Policy it n={my .. my}, m,(-|s) € A(A)

[1] Altman, Eitan. Constrained Markov decision processes. Routledge, 2021 1
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next state s’ | reward r(s,a) cost ¢(s,a) | a~w(:|s)

Given a policy t, we use V™(r,, p) and V™(d,, p) to denote the expected cumulative reward and cost under policy m,
starting from state s;:

H
Vn(rk' p) = E[Zgzl rk,h(Shr ah) |Slr77:r p]’ Vn(dk' p) = E[Z dk,h(Shi ah) |Slr77:r p]
h=1

[1] Altman, Eitan. Constrained Markov decision processes. Routledge, 2021 2
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The objective for Constrained MDPs is to find a policy ™ : S A(A) (A(-) is a probability simplex) to maximize the
expected cumulative rewards while satisfying constraints under both settings:

n* € argmax V™ (7, p), s.t. V”(J, p) < 0 (stochastic cost)
s.t. V®(dy,p) <0,Vk € [K] (adversaril cost)

where 7 :=E,_p[r], d := Eg_p[d]. And the goal of the online Constrained MDPs problem is to learn an optimal
policy to minimize the cumulative regret and strong cumulative violation of constraints after K episodes, which are

defined below: K

Regret(K) = Z[V”* (7,p) — V™ (7, p)]
k=1

K
Violation(K) = z [V”k(cz, p)]* (stochastic cost)

k=1
Violation(K) = z [V’Tk(dk,p)]Jr (adversarial cost)
k=1
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Optimization Problem

Alternatively, the original optimization problem can be naturally reformulated a LP with the occupancy
measure {q7(s,a,s")H_; 1

mea(gi 7Tq s.t. dTq <0 (stochastic cost)
q

s.t.dy q<0,VkeE [K](adversarial cost)

where g € [0,1]°4¥ is the occupancy measure vector and Q is the set of all valid occupancy measures; 7 €
[0,1]548,d € [0,1]54" and d,, € [0,1]54". And the policy can be reconstructed as:

_ qn(s,a)
s (als) = Y qn(s,a’)

To foster exploration in the unknown model, we adopt the principle of optimistic estimation2;, we define the

empirical rewards 7“‘,{"1, costs d,’§'1 and transition kernels ﬁ,’f"l , then we can construct the optimistic

estimates for 7y p, dk'h and optimistic occupancy measure set Q.

[1] Altman, Eitan. Constrained Markov decision processes. Routledge, 2021

[2] Auer, Peter, Thomas Jaksch, and Ronald Ortner. "Near-optimal regret bounds for reinforcement learning." Advances in neural information processing systems 21 (2008).
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We define the following surrogate objective function with exponential potential Lyapunov function:
=T ' T 1t 1 2 &/ T 1T
fil@) =a (—Tk q+ ' (4)|diq] ) —3 g — qill?, @'(x) = exp(Bx) — 1, A = Ap—1 + a|diqy]

Exponential Lyapunov function Benefits:
* Tracks long-term constraint violations
e Encourages adaptive safe exploration

* Penalizes positively violated constraints

Moreover, this objective function design enables us to jointly bound the cumulative regret and constraint violation:

K K
O +a ) (1q" ~ i a) < ) (@) ~ fe@)
k=1 k=1

Thus, this relationship motivates the design of algorithms aimed at minimizing regret Y a_:(fx(qr) — fx(q).
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To minimize regret YX_. (fi (qx) — f1(q")), we adopt the Optimistic Online Mirror Descent algorithm:

® Optimistic Phase: Predicts next occupancy measure using current gradient
Jier = argmin M1dq, Vi (qx)) +D(q, Gr)
® Refinement Phase: Refines occupancy measure using predicted 41

Gk+1 = argmin Mies @ Va1 @ren)) + D(Q, Gisr)

The optimistic update mechanism plays a critical role in tightening performance bounds by integrating historical
gradients and occupancy information. Once g, is computed, we construct the policy ;.4 , execute it, and
estimate the reward, cost, and transition kernel.
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Algorithm Resret Adversarial Stochastic Slater's Known Safe
g g Violation Violation Condition Policy
[1] 0(K) N/A 0(WK) No
[2] 0(VK) N/A 0(WK) Yes
[3] 0(WK) N/A 0(WK) No
[4] 0(K%9%) N/A 0(K%9%) No

~ 6 _ 6
[5] 0(K7) N/A 0(K7) No
Ours 0(VK) 0(K) 0(VK) X No

Our Algorithm can obtain the following theoretical results:

Regret(K) < 0 (VNSAH3K + S?AH? +VCVSAHK + SAH)
Violation(K) < O(W NSAH3K + S2AH3 + VCVSAHK + SAH)(both constraint settings)
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Algorithm Resret Adversarial Stochastic Slater's Known Safe
g g Violation Violation Condition Policy
[1] 0(VK) N/A 0(WK) No
[2] 0(VK) N/A 0(WK) Yes
[3] 0(VK) N/A OWK) No
[4] 0(K%9%) N/A 0(K%9%) No

~ 6 _ 6
[5] 0(K7) N/A 0(K7) No
Ours 0(VK) 0(K) 0(VK) X No

® We establish optimal 6(\/?) regret and constraint violation bounds under minimal assumptions:
No Slater’s Condition and No Known Safe Policy required.

® This isthe first result achieving optimal orderin total episodes K for online CMDPs with anytime
adversarial constraints.

® Furthermore, when a generative model (i.e., a perfect simulator) is available, the regret can be tightly
bounded by O(1).
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We test the algorithm in a synthetic, finite-horizon CMDP with 5 states, 3 actions, horizon H =5, Dirichlet(a = 0.5)
transitions, uniform rewards, and either stochastic costs (uniformin [-1,1]) or adversarial costs drawn each episode
from{-1.0,-0.6,-0.2,0, 0.2, 0.6, 1.0}. The initial state is chosen uniformly and the cumulative-cost constraint is fixed
at 0; we measure cumulative constraint violation over K = 3000 episodes.
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® OMDPD algorithm: First method to handle online safe RL with anytime adversarial constraints—no Slater
condition or pre-known safe policy required.

Conclusion

® Optimal guarantees: Provably achieves 0 (\/ﬁ) bounds on both regret and strong constraint violation.

® Broaderimpact: Advances CMDP theory and offers a robust blueprint for safe decision-makingin
dynamic, adversarial environments.

Paper Link: https://arxiv.org/pdf/2505.21841
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