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Constrained MDPs Notation[1]: 

[1] Altman, Eitan. Constrained Markov decision processes. Routledge, 2021

μ Initial state distribution

𝒮 State space (finite, |𝒮| = S)

𝒜 Action space (finite, |𝒜| = A)

H Episode horizon length

𝒫ₕ Transition kernel 𝒫ₕ(s′|s,a): 𝒮×𝒜×𝒮→ [0,1]

rₖ Reward vector (r{k, 1} … r{k, H}); r{k, h}: 𝒮×𝒜→ [0,1]

dₖ Cost vector (d{k, 1} … d{k, H}); d{k, h}: 𝒮×𝒜→ [−1,1]

Rewards Stochastic — rk i.i.d. from fixed distribution R

Costs (Stochastic) dₖ i.i.d. from fixed distribution D

Costs (Adversarial) dₖ chosen online by adversary

Policy π π = {π1 … πH}, πh(·|s) ∈ Δ(𝒜)
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Constrained MDPs Definition[1]: 

[1] Altman, Eitan. Constrained Markov decision processes. Routledge, 2021

Given a policy π, we use Vπ(rk, p) and V𝛑(dk, p) to denote the expected cumulative reward and cost under policy π, 
starting from state s1:

𝑉𝜋 𝑟𝑘, 𝑝 ≔ Ε σh=1
𝐻 𝑟𝑘,ℎ 𝑠ℎ, aℎ 𝑠1, 𝜋, 𝑝 ，𝑉𝜋 𝑑𝑘, 𝑝 ≔ Ε[෍

h=1

𝐻

d𝑘,ℎ 𝑠ℎ, aℎ |𝑠1, 𝜋, 𝑝]
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Optimization Problem

The objective for Constrained MDPs is to find a policy 𝜋 : 𝒮→ Δ(𝒜) (Δ(·) is a probability simplex) to maximize the 
expected cumulative rewards while satisfying constraints under both settings:

𝜋∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥 𝑉𝜋 ҧ𝑟, 𝑝 , 𝑠. 𝑡.  𝑉𝜋 ҧ𝑑, 𝑝 ≤ 0 (𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑐𝑜𝑠𝑡)
                                                                                                            𝑠. 𝑡.  𝑉𝜋 𝑑𝑘, 𝑝 ≤ 0, ∀ 𝑘 ∈ [𝐾] (𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑙 𝑐𝑜𝑠𝑡)

where ҧ𝑟 ≔ Ε𝑟~𝑅 𝑟 , ҧ𝑑 ≔ Ε𝑑~𝐷 𝑑 .  And the goal of the online Constrained MDPs problem is to learn an optimal 
policy to minimize the cumulative regret and strong cumulative violation of constraints after 𝐾 episodes, which are 
defined below:

𝑅𝑒𝑔𝑟𝑒𝑡 𝐾 = ෍

𝑘=1

𝐾

[𝑉𝜋∗
ҧ𝑟, 𝑝 − 𝑉𝜋𝑘

ҧ𝑟, 𝑝 ]

𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝐾 = ෍

𝑘=1

𝐾

[𝑉𝜋𝑘 ҧ𝑑, 𝑝 ]+ (𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑐𝑜𝑠𝑡)

𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝐾 = ෍

𝑘=1

𝐾

[𝑉𝜋𝑘
𝑑𝑘, 𝑝 ]+ (𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝑐𝑜𝑠𝑡)
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Optimization Problem

Alternatively, the original optimization problem can be naturally reformulated a LP with the occupancy 
measure 𝑞ℎ

𝜋(𝑠, 𝑎, 𝑠′) ℎ=1
𝐻  [1] :

max
𝑞∈𝑄

 ҧ𝑟𝑇𝑞  𝑠. 𝑡.  ҧ𝑑𝑇𝑞 ≤ 0 (𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑐𝑜𝑠𝑡)

                                                                                                 𝑠. 𝑡.  𝑑𝑘
𝑇𝑞 ≤ 0, ∀ 𝑘 ∈ [𝐾](𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝑐𝑜𝑠𝑡)

where 𝑞 ∈ 0,1 𝑆𝐴𝐻 is the occupancy measure vector and 𝑄 is the set of all valid occupancy measures;ഥ 𝑟 ∈
0,1 𝑆𝐴𝐻, ҧ𝑑 ∈ 0,1 𝑆𝐴𝐻 and 𝑑𝑘 ∈ 0,1 𝑆𝐴𝐻. And the policy can be reconstructed as:

𝜋𝑠
𝑞

𝑎 𝑠 =
𝑞ℎ(𝑠, 𝑎)

σ𝑎′ 𝑞ℎ(𝑠, 𝑎′)

To foster exploration in the unknown model, we adopt the principle of optimistic estimation [2],  we define the 
empirical rewards Ƹ𝑟ℎ

𝑘−1, costs መ𝑑ℎ
𝑘−1 and transition kernels Ƹ𝑝ℎ

𝑘−1 , then we can construct the optimistic 
estimates for ǁ𝑟𝑘,ℎ, ሚ𝑑𝑘,ℎ and optimistic occupancy measure set 𝑄.

[1] Altman, Eitan. Constrained Markov decision processes. Routledge, 2021
[2] Auer, Peter, Thomas Jaksch, and Ronald Ortner. "Near-optimal regret bounds for reinforcement learning." Advances in neural information processing systems 21 (2008).
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Algorithm: Surrogate Objective Function

We define the following surrogate objective function with exponential potential Lyapunov function:

𝑓𝑘 𝑞 = 𝛼 − ǁ𝑟𝑘
𝑇𝑞 + Φ′ 𝜆𝑘

ሚ𝑑𝑘
𝑇𝑞

+
−

1

2
𝑞 − 𝑞𝑘

2, Φ′ 𝑥 = exp 𝛽𝑥 − 1, 𝜆𝑘 = 𝜆𝑘−1 + 𝛼 ሚ𝑑𝑘
𝑇𝑞𝑘

+

Exponential Lyapunov  function Benefits:

   • Tracks long-term constraint  violations

   • Encourages adaptive safe  exploration

   • Penalizes  positively violated constraints

Moreover, this objective function design enables us to jointly bound the cumulative regret and constraint violation:

Φ 𝜆𝐾 + 𝛼 ෍

𝑘=1

𝐾

( ǁ𝑟𝑘
𝑇𝑞∗ − ǁ𝑟𝑘

𝑇𝑞𝑘) ≤ ෍

𝑘=1

𝐾

(𝑓𝑘 𝑞𝑘 − 𝑓𝑘(𝑞∗))

Thus, this relationship motivates the design of algorithms aimed at minimizing regret σ𝑘=1
𝐾 (𝑓𝑘 𝑞𝑘 − 𝑓𝑘(𝑞∗)).
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Algorithm: Optimistic Online Mirror Descent

To minimize regret σ𝑘=1
𝐾 (𝑓𝑘 𝑞𝑘 − 𝑓𝑘(𝑞∗)) , we adopt the Optimistic Online Mirror Descent algorithm:

⚫ Optimistic Phase: Predicts next occupancy measure using current gradient

ො𝑞𝑘+1 = 𝑎𝑟𝑔min
𝑞∈𝑄𝑘

𝜂𝑘 𝑞, ∇𝑓𝑘(𝑞𝑘) + 𝒟(𝑞, ො𝑞𝑘)

⚫ Refinement Phase: Refines occupancy measure using predicted ො𝑞𝑘+1

𝑞𝑘+1 = 𝑎𝑟𝑔min
𝑞∈𝑄𝑘

𝜂𝑘+1 𝑞, ∇ መ𝑓𝑘+1 ( ො𝑞𝑘+1) + 𝒟(𝑞, ො𝑞𝑘+1)

The optimistic update mechanism plays a critical role in tightening performance bounds by integrating historical 
gradients and occupancy information. Once 𝑞𝑘+1  is computed, we construct the policy 𝜋𝑘+1 , execute it, and 
estimate the reward, cost, and transition kernel.
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Theoretical Results
Algorithm Regret Adversarial 

Violation
Stochastic 
Violation

Slater's 
Condition

Known Safe 
Policy

[1] O( 𝐾) N/A O( 𝐾) No

[2] O( 𝐾) N/A O( 𝐾) Yes

[3] ෩Ο( 𝐾) N/A ෩Ο( 𝐾) No

[4] ෩Ο(𝐾0.93) N/A ෩Ο(𝐾0.93) No

[5] ෩Ο(𝐾
6
7) N/A ෩Ο(𝐾

6
7) No

Ours ෩Ο( 𝐾) ෩Ο( 𝐾) ෩Ο( 𝐾) No

Our Algorithm can obtain the following theoretical results:

𝑅𝑒𝑔𝑟𝑒𝑡 𝐾 ≤ ෩Ο 𝑁𝑆𝐴𝐻3𝐾 + 𝑆2𝐴𝐻3 + 𝐶 𝑆𝐴𝐻𝐾 + 𝑆𝐴𝐻

𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝐾 ≤ ෩Ο( 𝑁𝑆𝐴𝐻3𝐾 + 𝑆2𝐴𝐻3 + 𝐶 𝑆𝐴𝐻𝐾 + 𝑆𝐴𝐻)(both constraint settings)

[1] Efroni, Yonathan, Shie Mannor, and Matteo Pirotta. "Exploration-exploitation in constrained mdps." arXiv preprint arXiv:2003.02189 (2020).
[2] Müller, Adrian, Pragnya Alatur, Giorgia Ramponi, and Niao He. "Cancellation-free regret bounds for lagrangian approaches in constrained markov decision processes." arXiv preprint
arXiv:2306.07001 (2023).
[3] Stradi, Francesco Emanuele, Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. "Optimal Strong Regret and Violation in Constrained MDPs via Policy Optimization." arXiv preprint
arXiv:2410.02275 (2024).
[4] Müller, Adrian, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. "Truly no-regret learning in constrained mdps." arXiv preprint arXiv:2402.15776 (2024).
[5] Kitamura, T., Kozuno, T., Kato, M., Ichihara, Y., Nishimori, S., Sannai, A., Sonoda, S., Kumagai, W. and Matsuo, Y., 2024. A policy gradient primal-dual algorithm for constrained mdps with
uniform pac guarantees. arXiv preprint arXiv:2401.17780.
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Theoretical Results
Algorithm Regret Adversarial 

Violation
Stochastic 
Violation

Slater's 
Condition

Known Safe 
Policy

[1] O( 𝐾) N/A O( 𝐾) No

[2] O( 𝐾) N/A O( 𝐾) Yes

[3] ෩Ο( 𝐾) N/A ෩Ο( 𝐾) No

[4] ෩Ο(𝐾0.93) N/A ෩Ο(𝐾0.93) No

[5] ෩Ο(𝐾
6
7) N/A ෩Ο(𝐾

6
7) No

Ours ෩Ο( 𝐾) ෩Ο( 𝐾) ෩Ο( 𝐾) No

⚫ We establish optimal ෩Ο( 𝐾) regret and constraint violation bounds under minimal assumptions:
No Slater’s Condition and No Known Safe Policy required.

⚫ This is the first result achieving optimal order in total episodes K for online CMDPs with anytime 
adversarial constraints.

⚫ Furthermore, when a generative model (i.e., a perfect simulator) is available, the regret can be tightly 
bounded by O(1).
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Experiment Results

We test the algorithm in a synthetic, finite-horizon CMDP with 5 states, 3 actions, horizon H = 5, Dirichlet(α = 0.5) 
transitions, uniform rewards, and either stochastic costs (uniform in [-1,1]) or adversarial costs drawn each episode 
from {-1.0, -0.6, -0.2, 0, 0.2, 0.6, 1.0}. The initial state is chosen uniformly and the cumulative-cost constraint is fixed 
at 0; we measure cumulative constraint violation over K = 3000 episodes. 
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Conclusion

https://arxiv.org/pdf/2505.21841

⚫ OMDPD algorithm: First method to handle online safe RL with anytime adversarial constraints—no Slater 
condition or pre-known safe policy required.

⚫ Optimal guarantees: Provably achieves ෩Ο 𝐾  bounds on both regret and strong constraint violation.

⚫ Broader impact: Advances CMDP theory and offers a robust blueprint for safe decision-making in 
dynamic, adversarial environments.

Paper Link: https://arxiv.org/pdf/2505.21841

Thanks for your listening !

https://arxiv.org/pdf/2505.21841
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