

Active Learning for Efficient Discovery of Optimal Combinatorial Perturbations

Jason Qin¹, Hans-Hermann Wessels¹, Carlos Fernandez-Granada², Yuhan Hao¹

Motivation - Understanding Combinatorial Biology

Goal: Understand gene combinations for novel biology, drug discovery

Limitation: Exhaustive exploration of combinatorial space is infeasible

Our Contribution: NAIAD

- 1) Accurately model non-linear interactions
- 2) Active learning framework to identify strongest combinations with limited testing

Modeling Non-Linear Interactions

 $Y_{i+j} = \phi([Y_i,Y_j]W_1)A_1^T + f(\phi(W_2X_i^{ ext{gene}}),\phi(W_2X_j^{ ext{gene}}))A_2^T$

Interactions between **gene embeddings** capture non-linearity of interactions

Embedding dimension scales with dataset size

Single-gene effects condition predictions based on predicted additive effect

Selecting Strong Combinations via Active Learning

NAIAD Captures Combinatorial Phenotype Effectively

NAIAD outperforms comparable models for accurately identifying combinatorial effect

NAIAD Captures Combinatorial Phenotype Effectively

		Dataset RMSE ($\times 10^{-2}$)				
Gene Frequency	Model	Norman	Simpson	Horlbeck K562	Horlbeck Jurkat	
	Linear	6.2 (1.7)	3.3 (0.3)	6.4 (0.9)	3.9 (0.6)	
4	MLP	7.7 (0.9)	4.3 (0.9)	7.8 (2.5)	5.5 (2.1)	
	GEARS	16.6 (19.8)	5.4 (3.4)	13.0 (11.6)	13.5 (16.1)	
	RECOVER	7.1 (2.8)	3.9 (0.4)	7.9 (2.0)	5.0 (0.7)	
	NAIAD	5.1 (1.8)	2.2 (0.1)	6.1 (1.9)	3.0 (0.6)	
	Linear	6.1 (1.1)	3.3 (0.2)	6.4 (0.9)	3.8 (0.6)	
20	MLP	5.0 (1.4)	2.0 (0.3)	5.9 (0.1)	3.0 (0.4)	
	GEARS	10.7 (12.1)	3.5 (2.0)	14.0 (14.0)	20.7 (24.0)	
	RECOVER	4.7 (0.5)	1.9 (0.4)	5.6 (1.0)	3.0 (0.4)	
	NAIAD	4.7 (0.1)	1.9 (0.2)	5.4 (0.6)	2.8 (0.6)	

NAIAD outperforms comparable models for accurately identifying combinatorial effect

We identify a minimal "gene occurrence" frequency for training accurate embeddings

NAIAD Identifies Strong Perturbations Efficiently

Metric

True Positive Rate (TPR) of identifying strongest perturbations

Gene modality

Model	Method	Norman	Simpson	Horlbeck K562	Horlbeck Jurkat
NAIAD	Uniform	93.3 (0.7)	70.3 (5.0)	38.7 (0.3)	81.3 (0.9)
RECOVER	Uniform	81.0 (0.0)	44.3 (0.3)	37.0 (0.6)	75.0 (0.6)
NAIAD	MPE	143.0 (1.5)	141.7 (3.7)	99.7 (4.2)	150.0 (4.0)
RECOVER	MPE	138.7 (2.7)	88.3 (28.2)	53.7 (23.7)	65.7 (10.4)
NAIAD	UCB	110.3 (2.5)	102.7 (8.1)	60.3 (3.3)	96.0 (8.5)
RECOVER	UCB	84.7 (3.5)	62.0 (14.1)	26.3 (1.3)	48.7 (7.1)

NAIAD Identifies Strong Perturbations Efficiently

Metric

True Positive Rate (TPR) of identifying strongest perturbations

Gene modality

Model	Method	Norman	Simpson	Horlbeck K562	Horlbeck Jurkat
NAIAD	Uniform	93.3 (0.7)	70.3 (5.0)	38.7 (0.3)	81.3 (0.9)
RECOVER	Uniform	81.0 (0.0)	44.3 (0.3)	37.0 (0.6)	75.0 (0.6)
NAIAD	MPE	143.0 (1.5)	141.7 (3.7)	99.7 (4.2)	150.0 (4.0)
RECOVER	MPE	138.7 (2.7)	88.3 (28.2)	53.7 (23.7)	65.7 (10.4)
NAIAD	UCB	110.3 (2.5)	102.7 (8.1)	60.3 (3.3)	96.0 (8.5)
RECOVER	UCB	84.7 (3.5)	62.0 (14.1)	26.3 (1.3)	48.7 (7.1)

Drug modality

Thank You!

Code

https://github.com/NeptuneBio/NAIAD

Contact

jason@neptune.bio

Team

Jason Qin

Carlos Fernandez-Grenada

MYU

Harm Wessels

Yuhan Hao

