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Introduction: NAS
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Introduction: FSL
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Solving the FSL problem by meta-learning
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The Goal
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Designing the best neural architectures
without involving any training :

for
Image classification
FSL

Answering two questions:
Which properties of MAML impact the global 
convergence of FSL? 
Can we find a simple proxy for FSL?



The Problems

6/16/25 ICML 2025, Vancouver, Canada 8

Problems in NAS and FSL:

Previous NAS works only target a pre-defined task. 

For a new task in few-shot learning (FSL)
scenarios, the architecture is either searched from
scratch, which is neither efficient nor flexible, or
borrowed architecture from the ones obtained on
other tasks, which may lead to sub-optimal.



Motivation
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Illustration of our IBFS and related approaches. (a)
Vanilla neural architecture search. (b) Adaption neural
architecture search. (c) The proposed IBFS can find
the best meta architecture without training for
multiple unseen tasks.



Motivation
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Observations.
1. Existing proxies (i.e., NASWOT) suffer from larger

score variance, which will degrade the accuracy.
2. Kendall’s Tau between accuracy and information

entropy remains unchanged.
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Design of FSL-Friendly Architectures

• Global Convergence of MAML.
To clearly illustrate the global convergence of MAML, we
borrow one of the conclusions from MetaNTK-NAS, which
provides a Neural Tangent Kernel (NTK) perspective to
understand MAML. While MetaNTK-NAS provides
valuable theoretical guarantees, its proof is highly intricate
and relies heavily on NTK theory, which can be
computationally expensive. In contrast, this paper presents a
novel and more accessible proof for the global convergence
of MAML.

6/16/25 ICML 2025, Vancouver, Canada 12



Design of FSL-Friendly Architectures

• IBFS.
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Experiments: FSL

• Mini-ImageNet 
– 60,000 RGB images of 84x84 pixels 
– 100 classes 
– Split 64:16:20

• Tiered-ImageNet 
– 779,165 RGB images of 84x84 pixels 
– 608 classes 
– Split 351:97:160
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Experiments: NAS

• NAS-Bench-201 
– CIFAR-10 
– CIFAR-100 
– ImageNet-16-120 

• Larger Dataset 
– ImageNet1K

• Transformer Design 
– ImageNet1K
– TF-TAS-T
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Results: NAS-Bench-201
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Results: Larger ImageNet1k 
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Results: FSL

6/16/25 ICML 2025, Vancouver, Canada 19

– SOTA accuracy
– Lightweight architecture 
– Lowest search costs 



Results: FSL
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IBFS vs. Peer competitors in terms of
costs, accuracy, and generalization.

Comparison to SOTAs in terms of
accuracy of FSL and Search costs.



Results: Transformer Design 
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To further scrutinize the effectiveness of our method
for transformer designing, conducting additional
experiments on AutoFormer in a larger ImageNet
dataset. Those empirical results show the strong
generalizability of our method for transformer design.
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Why IBFS Works Well?

• Measuring first-order loss landscape of MAML.
– Theory: On exact computation with an infinitely 

wide neural net [Arora, NeurlPS’19].
• How to design training-free method for FSL?
– Good Theory (Information Bottleneck).
– Good findings (larger score variance).

• Make it fast: training-free and acceleration.
–Without any training.
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Thank you!

Questions please?
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