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Adversarial Attack

- 𝛿 : imperceptible pixel-level perturbation

Research Background
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Adversarial Training (AT)

- Train a model to be robust against adversarial attacks

- Formulated as a min-max optimization problem
- Inner maximization: find 𝛿 that maximizes the loss

- Outer minimization: update model to minimize the worst-case loss
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Fast Adversarial Training (FAT)

- Time-consuming generation of training attacks through iterative updates
- FAT: Efficient single-step attacks with low-quality perturbations
à Decreased model robustness

We propose a method that achieves improved robustness, even when the quality of 
perturbations generated during inner maximization is somewhat limited.
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Proposed Method
Quadratic Upper Bound for AT
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Proposed Method
Quadratic Upper Bound Loss (QUB Loss)
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Proposed Method
Interpretation of QUB Loss

First term
- Cross-entropy loss on clean samples enhancing standard accuracy

Third term
- Maintaining consistent model outputs before and after perturbation
- Securing robustness by preventing changing in results due to 𝛿
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Proposed Method
Interpretation of QUB Loss

- The inner product between the 𝛿 and the loss gradient decreases when the two directions are
misaligned

- Minimizing this term reduces the adversarial effect on the loss, thereby increasing robustness

Second term
Approximation of the second term using the chain rule
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Training Strategy

QUB-Static
- Using any existing method for inner 

maximization (generate 𝛿)
- Calculating loss with QUB Loss instead of 

Adversarial Training Loss
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Training Strategy

QUB-Decreasing
- Upper bound optimization focuses on worst case 

à often resulting in overly pessimistic training
- Can cause unnecessary trade-off with standard 

accuracy, even when robust is sufficient

- Proposed: QUB-decreasing scheduling (Start with 
QUB, then linearly decrease and transition to AT) 
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Experiments
Datasets: CIFAR-10, CIFAR-100, Tiny ImageNet

Models: ResNet-18, WRN-34-10, PreActResNet-18
1

Baselines: 
- Iterative methods (PGD, TRADES)
- single-step methods (e.g., FGSM-RS, FGSM-CKPT, ELLE-A, etc.)

Evaluation: Standard Accuracy, Robust Accuracy, Dominant eigenvalue, Sparsity



Quadratic Upper Bound for Boosting Robustness Connected Intelligence Lab @ Konkuk University

Experiments

- Failure to prevent catastrophic overfitting in FGSM-RS

- Consistent performance gains with QUB across 
methods (except FGSM-RS)

- QUB-static: Clear SA trade-offs 

- QUB-decreasing: Reduced trade-offs + SA 
improvements (achieving superior balance)
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Loss Landscape Visualization

- Flatter loss landscape–less sensitivity to perturbations

- Improved defense over a wider region

For full results, please refer to the paper.
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Conclusion
- Convexity-based robust loss: Introduced a novel loss function leveraging convexity 

to enhance adversarial robustness

- QUB minimization: Replaced standard AT loss with the quadratic upper bound (QUB) 
of cross-entropy loss for optimization

- Seamless FAT integration: Demonstrated compatibility with existing Adversarial 
Training frameworks

- Empirical validation: Achieved enhanced robustness across diverse experimental 
setups and evaluation metrics
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