Quadratic Upper Bound for Boosting Robustness

Euijin You¹, Hyang-Won Lee^{1*}

1 Department of Computer Science and Engineering, Konkuk University, Seoul, South Korea.

* Correspondence author: <u>leehw@konkuk.ac.kr</u>

Research Background

Adversarial Attack

$$\max_{\|\delta\|_p \le \epsilon} \mathcal{L}(f_{\theta}(x+\delta), y)$$

- δ : imperceptible pixel-level **perturbation**

Adversarial Training (AT)

$$\min_{\theta} \max_{\|\delta\|_p \leq \epsilon} \mathcal{L}(f_{\theta}(x+\delta), y)$$

- Train a model to be robust against adversarial attacks
- Formulated as a min-max optimization problem
 - Inner maximization: find δ that maximizes the loss
 - Outer minimization: update model to minimize the worst-case loss

Research Background

Fast Adversarial Training (FAT)

- Time-consuming generation of training attacks through iterative updates
- FAT: Efficient single-step attacks with low-quality perturbations
 - → Decreased model robustness

We propose a method that achieves improved robustness, even when the quality of perturbations generated during inner maximization is somewhat limited.

Quadratic Upper Bound for AT

Lemma 1. The AT loss function is upper-bounded as follows:

$$\mathcal{L}(f(x+\delta)) \leq \mathcal{L}(f(x)) + (f(x+\delta) - f(x))^T \nabla_f \mathcal{L}(f(x)) + \frac{\|\boldsymbol{H}\|_2}{2} \|f(x+\delta) - f(x)\|_2^2,$$
(6)

where $\nabla_f \mathcal{L}$ is the gradient of the loss with respect to the logit f and $||\mathbf{H}||_2$ is the L_2 norm of the Hessian matrix of the loss with respect to the logit, evaluated at some point between f(x) and $f(x + \delta)$.

Quadratic Upper Bound Loss (QUB Loss)

Lemma 2. We have $||H||_2 \le \frac{1}{2}$.

The derivation of the bound is presented in Appendix C.

Based on Lemmas 1 and 2, the QUB loss is defined as

$$\mathcal{L}_{\text{QUB}} = \mathcal{L}(f(x)) + (f(x+\delta) - f(x))^T \nabla_f \mathcal{L}(f(x)) + \frac{1}{4} ||f(x+\delta) - f(x)||_2^2.$$
 (7)

Interpretation of QUB Loss

$$\mathcal{L}_{\text{QUB}} = \mathcal{L}(f(x)) + (f(x+\delta) - f(x))^T \nabla_f \mathcal{L}(f(x)) + \frac{1}{4} ||f(x+\delta) - f(x)||_2^2$$

First term

- Cross-entropy loss on clean samples enhancing standard accuracy

Third term

- Maintaining consistent model outputs before and after perturbation
- Securing robustness by preventing changing in results due to δ

Interpretation of QUB Loss

$$\mathcal{L}_{\text{QUB}} = \mathcal{L}(f(x)) + (f(x+\delta) - f(x))^T \nabla_f \mathcal{L}(f(x)) + \frac{1}{4} ||f(x+\delta) - f(x)||_2^2$$

Second term

Approximation of the second term using the chain rule

$$(f(x+\delta)-f(x))^T \nabla_f \mathcal{L}(f(x)) \approx \delta^T \nabla_x \mathcal{L}(f(x)).$$

- The inner product between the δ and the loss gradient decreases when the two directions are **misaligned**
- Minimizing this term reduces the adversarial effect on the loss, thereby increasing robustness

Training Strategy

Algorithm 1 AT with Static QUB Loss

```
Input: network architecture f parameterized by \theta, batch size B, batched training data \{x_i, y_i\}_{i=1}^B, training epoch T, perturbation generation method P

Output: Adversarially robust network f

for t=1 to T do

for i=1 to B do

\delta = P(f,x_i,y_i)

Use Equation (7) to compute \mathcal{L}_{\text{QUB}}

\theta \leftarrow \theta - \nabla_{\theta} \mathcal{L}_{\text{QUB}}

end for
```

QUB-Static

- Using **any existing metho**d for inner maximization (generate δ)
- Calculating loss with QUB Loss instead of Adversarial Training Loss

Training Strategy

Algorithm 2 AT w/ Decreasing Weight on QUB Loss

```
Input: network architecture f parameterized by \theta, batch
size B, batched training data \{x_i, y_i\}_{i=1}^B, training epoch
T, perturbation generation method P
Output: Adversarially robust network f
for t = 1 to T do
   \lambda_t = t/T
   for i = 1 to B do
       \delta = P(f, x_i, y_i)
       \mathcal{L}_{AT} = \mathcal{L}(f(x_i + \delta), y)
       Use Equation (7) to compute \mathcal{L}_{OUB}
       \mathcal{L}_{	ext{total}} = (1 - \lambda_t) \cdot \mathcal{L}_{	ext{QUB}} + \lambda_t \cdot \mathcal{L}_{	ext{AT}}
       \theta \leftarrow \theta - \nabla_{\theta} \mathcal{L}_{\text{total}}
   end for
end for
```

QUB-Decreasing

- Upper bound optimization focuses on worst case
 - → often resulting in overly pessimistic training
- Can cause unnecessary trade-off with standard accuracy, even when robust is sufficient
- Proposed: QUB-decreasing scheduling (Start with QUB, then linearly decrease and transition to AT)

Experiments

Datasets: CIFAR-10, CIFAR-100, Tiny ImageNet

Models: ResNet-18, WRN-34-10, PreActResNet-18

Baselines:

- Iterative methods (PGD, TRADES)
- single-step methods (e.g., FGSM-RS, FGSM-CKPT, ELLE-A, etc.)

Evaluation: Standard Accuracy, Robust Accuracy, Dominant eigenvalue, Sparsity

Experiments

Table 1. Test robustness (%) on the CIFAR-10 dataset using ResNet18 architecture. Number in bold indicates the best.

Method	Step	SA	PGD10	PGD20	PGD50-10	AA	Time (h)
no AT	-	94.64	0.00	0.00	0.00	0.00	0.57
NuAT	1	82.99	51.40	50.33	49.60	47.70	1.36
GAT	1	81.64	54.78	53.87	53.30	47.96	1.45
TRADES	10	82.11	54.25	53.39	52.77	50.16	3.50
Free-AT	1	75.99	45.32	44.74	44.27	41.38	0.3
+ QUB-static	1	72.98	46.72	46.19	45.89	42.82	0.56
+ QUB-decreasing	1	76.10	45.58	44.89	44.35	41.60	0.56
FGSM-RS	1	84.32	47.28	45.60	44.66	43.34	0.86
+ QUB-static	1	71.13	42.96	42.19	41.54	38.48	1.16
+ QUB-decreasing	1	72.90	43.85	42.96	42.52	39.31	1.16
FGSM-CKPT	1	90.02	41.19	38.81	37.42	37.22	1.05
+ QUB-static	1	87.63	45.41	43.78	42.54	41.53	1.35
+ QUB-decreasing	1	88.56	43.87	41.88	40.70	39.85	1.35
FGSM-GA	1	82.93	49.89	48.53	47.74	45.75	3.02
+ QUB-static	1	79.75	52.24	51.33	50.82	47.33	3.27
+ QUB-decreasing	1	81.83	50.88	49.83	49.07	46.74	3.27
FGSM-PGI(MEP)	1	81.48	53.43	52.47	51.75	48.41	0.89
+ QUB-static	1	80.45	53.99	53.16	52.43	48.35	1.19
+ QUB-decreasing	1	81.56	53.95	52.99	52.24	48.58	1.19
N-FGSM	1	81.21	49.12	48.02	47.36	45.17	0.58
+ QUB-static	1	80.76	51.19	50.24	49.60	47.00	0.70
+ QUB-decreasing	1	80.77	50.30	49.35	48.70	46.60	0.70
FGSM-UAP	1	81.62	53.38	52.59	51.83	47.75	1.18
+ QUB-static	1	79.70	54.25	53.51	52.77	47.76	1.49
+ QUB-decreasing	1	80.54	54.07	53.32	52.43	47.80	1.49
ELLE-A	1	82.14	47.91	46.39	45.57	43.52	0.97
+ QUB-static	1	77.60	50.20	49.44	48.86	45.51	1.21
+ QUB-decreasing	1	80.96	49.70	48.62	47.88	45.55	1.21
PGD-AT	10	81.53	52.99	52.30	51.82	48.33	2.34
+ QUB-static	10	80.24	54.58	53.87	53.39	49.91	2.64
+ QUB-decreasing	10	82.78	53.33	52.31	51.58	49.02	2.64

- Failure to prevent catastrophic overfitting in FGSM-RS
- Consistent performance gains with QUB across methods (except FGSM-RS)
- QUB-static: Clear SA trade-offs
- QUB-decreasing: Reduced trade-offs + SA improvements (achieving superior balance)

Loss Landscape Visualization

Figure 1. Loss landscape for a specific sample: (a) model trained with FGSM-CKPT and (b) with FGSM-CKPT + QUB. The left side shows colors based on the loss value, and the right side shows colors based on prediction accuracy.

- **Flatter** loss landscape—less sensitivity to perturbations
- Improved defense over a wider region

For full results, please refer to the paper.

Conclusion

- **Convexity-based robust loss**: Introduced a novel loss function leveraging convexity to enhance adversarial robustness
- **QUB minimization**: Replaced standard AT loss with the quadratic upper bound (QUB) of cross-entropy loss for optimization
- Seamless FAT integration: Demonstrated compatibility with existing Adversarial Training frameworks
- **Empirical validation**: Achieved enhanced robustness across diverse experimental setups and evaluation metrics

ICML 2025

Quadratic Upper Bound for Boosting Robustness

Thank you for listening!

Presenter: Euijin You, yuj0508@konkuk.ac.kr

Corresponding Author: Prof. Hyang-Won Lee, leehw@konkuk.ac.kr

