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Introduction

Dense depth prediction

* Deep neural networks (DNN) for dense depth prediction are used to
predict depth values for each pixel of an input image for both
monocular and binocular data.

* Application areas include scene understanding, autonomous driving,
robotics, augmented / virtual reality, etc.

* Usually, applications in these areas rely on low-end devices and have
strong limitations on hardware capabilities and energy consumption.

* Depth prediction models usually have high computational complexity,
restricting their use on low-end devices.

Problem statement
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* Forinference on low-end devices DNN should be quantized (e.g. to eight-bit weights and activations) using post-training-

quantization (PTQ) or quantization-aware-training (QAT).

* Quantization leads to depth prediction model performance degradation that is specific for depth modality.

* We seek to overcome this problem by representing depth in a form beneficial for quantization




Method

Low-end devices limitation

Model output is represented in low precision, typically eight bit or less.

Eight-bit precision is sufficient for RGB images.

Depth is high dynamic range signal that needs ~10-11 bits for accurate
representation. For example, representing depth in the range 0...10 m

with 1 cm accuracy requires ten bits

Main idea

Represent high dynamic range depth as two low dynamicrange
components -> predict these components on DSP -> reconstruct depth on
CPU at the post-processingstage.

Two components code depth as points on 2D parametric curve. Depth bit-
precision can beincreased by log, L, where L is length of the curve.
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Proposed method

* Training the full-precision model to directly predict the Hilbert
curve components of depth representation.

* Applying standard quantization methods (either PTQ or QAT).

* Running inference of the modified quantized model on-device
and obtaining Hilbert curve components in low-bit precision.

*  Applying post-processing to Hilbert curve components and
reconstruct depth in higher-bit precision.
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Depth representation as points on 2D Hilbert curve “g)
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Hilbert curve structure : :I:i ! ! ':'l t %

« Continuous fractal space-filling curve thatis constructed as a i
limit of piece-wise linear curves.

* Possessesthefollowing properties: continuity, non-self-

intersection, boundedness and self-avoidance. Hilbert curves for orders p = 1,2,3,4 (from left to rlght Every order is formed by the

] replacement of every node by an elementary 3-segment sequence.
* Curvelength L, = 2P + 1, where pis the curve order.

Forexample, 5 forp=2,and g forp=3.

* Allows codingsignal with dynamicrange L,, as two signals with
dynamicrange 1.

(a) (b)
Training process

lllustration of disparity transforms: (a) disparity map; (b) mapping to 2D with second order
Hilbert curve; (c, d) x and y components of the Hilbert curve; (e, f) coarse and fine details of
* Depth prediction DNN is modified to predict x and y components
of the Hilbert curve.

disparity map. Fine details in (f) are the least significant byte of disparity (a) represented in 16-
bit format. High-frequency oscillations make it appear different from the original disparity and
difficult to predict by a DNN model.

* Modified loss is applied to learn the modified representation.

It includes original depth loss and loss terms applied to Hilbert

Proposed DNN modification
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Dataset and models Analysis of W8A8 Models

» Training/validation/test datasets: rendered from ScanNet v2
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meshes using PyRende[ Precision ~ AbsRel, % EPE,px DI,% Sc T.ms P, mW-s/infr.
*  Models: DispNet
. . LN et . ) FP32 1.01 029 181 0858 - -
DispNet — U-Net-like architecture; FP16 1.50 0.37 1.80 0.855 19.54 19.52
*  DPT - transformer-based model with MobileViTv3-S encoder. WBAL6 1.78 063 522 0.798 187 12.3
WSAS 2.02 069 534 0585 105 7.1
E | t . t . Ours, WSAS 0.93 0.24 126 0807 120 8.7
valuation metrics
*  BasicDFSmetrics(meanabsoluterelative error, EPE, D1); FP32 0.75 021 095 0889 - -
. R . . FP16 1.14 027 097 0884 54.1 110.5
»  Cosine similarity between depth DCT coefficients (S¢) — sensitive WSAL6 4.03 097 558 0825 462 645
to structural errors. WSAS 4.16 1.03 576 0.520 26.7 28.3
Ours, W8AS 1.35 0.32 128 0.697 304 29.7

* Inference time, Power consumption. (a) W8A8 model on CPU delegate

*  The modified DispNet model in W8A8 format shows better quality than bE 08 * ‘ 10
the original model in W8A16 format. 04 07 - 05

*  Compared to the original model in W8A16 format, the modified DPT o oe (a) GT depth b) DPT depth (c) h3DPT depth
model in W8A8 format shows significantly better Abs Rel metric and only m_ — o
Sllghtly worse Sc. ° 00 02 04 06 08 1.0045 5 . \ I\ } 04

*  ForW8A8 model, overhead due to post-processing and Hilbert (d) W8AS model on DSP delegate

components prediction is about 14%.

«  Compared to original models in W8A16 format, modified modelsinwW8A8 2D histogram of h3DispNet W8A8 model ]
format reduce energy consumption by 35% and latency by 30-54%. output for CPU and DSP delegates. (d) Image (e) |GT - DPT| (F|GT - h3DPT]

*  Quantization error reduced by up to 4.6 times. Quantization errors of DPT and h3DPT, W8AS, DSP.
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