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What is a Directed Acyclic Graphical (DAG) Models?

Directed Acyclic Graph

Consider a directed acyalic graph (DAG) G , each node i associate
with random variable Xi .

• Random variables in the DAG can be factorized along the
DAG:

p(x)=
n∏
i=1

p(Xi |Xparents of i ).
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Structural Equation Model

In general, learning a DAG model is NP-hard!
A Structural Equation Model (SEM) guarantee the identifiability of
the learning problem. [PMJS14, SHH+06]

Linear SEM for Gaussian
Assume the conditional probability is linearly interpolated:

Xi =
∑

j :j is a parent of i
bjiXj +εi ,

where bji are constant, εi are Gaussian Noise.
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Background

Assumptions

1 Sparse graph: number of parents ≤ d .
2 Noise εi are i.i.d. N (0,1).

The identifiability for this type of problems are established by
[PB14], if the variances εi are equal.

Prior work

1 General algorithm, such as PC algorithm, needs faithfulness
assumption, which is strong.

2 Recent works [CDW19] and [GTA22], establishes O(d logn)
samples, n is the number of vertices.

3 However, the sample complexity is a polynomial of κ, which is
the condition number of the covariance matrix.
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Our Goal

• We want to avoid condition number.
• Also we want to have an efficient algorithm

Value τ(G )

τ(G )= 1+max
i

∑
j :i is a parent of j

b2
ij .

That is, 1 plus maximum of sum of square of the out-weight for
every vertex.
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Our Work

Figure 1: Comparison of the condition number, τ(G ) and the max
variance for a random graph.
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Results

Inefficient algorithm. We can recover the graph with
O(τ(G ) ·d logn) samples, in runtime nO(d).

Lower bound. We cannot recover the graph with at most
O(τ(G ) · logn) samples.

In addition to the algorithm with better sample complexity, we
present our result for an efficient algorithm
Efficient algorithm. We can recover the graph with
O(poly(τ(G ),d ,R) logn samples efficiently. Here, R is the
maximum variance of all Xi .
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Future Directions

• There is still a gap d between upper and lower bound. It is
still a open problem even for undirected graphical model.

• Can we design an efficient algorithm that does not depend on
R?

• How to generalize to other types of noises or unequal variance?
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Thank you and have a nice day!
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