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Differentiable Structure Learning for Causal Discovery

" Structure learning aims to recover the structure of the causal
grahical model, a directed acyclic graph (DAG), that represents
causal mechanisms underlying the observational data.
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Differentiable Structure Learning for Causal Discovery

" Traditional structure learning is a combinatorial optimization problem,
searching for the DAG with the optimal data approximation score.

" Zheng et al. [20187] reformulates structure learning as a continuous
optimization problem by proposing a smooth function to characterize the
ayclicity property of a graph.

Lyuzhou Chen,

min  F(W) min  F(W)
WeRdXxd — W eRdXxd
subject to G(W') € DAGs subject to (W) = 0,

Zheng, X., Aragam, B., Ravikumar, P, & Xing, E. P. (2018, December). DAGs with NO TEARS: continuous optimization
for structure learning. In Proceedings of the 32nd International Contference on Neural Information Processing
Systems (pp. 9492-9503).




Encoding Broad-Grained Prior Knowledge as Paths

Causal Relationship between A and B
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Structural Equation Model

Structural equation model Let GG denote a directed acyclic graph (DAG) with d nodes, where
the vertex set V' corresponds to a set of random variables X = { X, X»,..., X4}, and the edge set

E(G) C V x V defines the causal relationships among the variables. The structural equation model
(SEM) specifies that the value of each variable is determined by a function of its parent variables in
G and an independent noise component:

X; = [;(Paf %) (1)

where Pa_? ={X; | X; € X, (X;,X;) € E} denotes the set of parent variables of X in G, and
z; represents noise that 1s independent across different j. Denoting the structure of G as a weighted

adjacent matrix W € R**?, where W; ; # 0 equals that (X;, X;) € E(G), we have:
Xj :fj(wf:,jsxr*zj) (2)




Task Definition ot Differentiable Structure Learning

min F (W) subject to h(W) =0

We Rdxd

bW (Ed) W o W) ) >0> For all i =1,...,d, forbid i-length
— ® ¢ .
ARU=0 g path from a node to itself.
Path Absence

Some designs of the Acyclicity Constraint: d Characterization

h(W) =Trace(e” ") —d Z(‘W|k)%3 — (0
1 d k=1

h(W) =T <I+—W W) —I) . cL .

W) race( i’ " Forbid k-length path from i to

h(W) =-logdet(sI—W oW) +dlogs for all k=1,...,d
< Absence of Path (i,j)
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Differentiable Structure Learning with Ancestral Constraints

" Differentiable structure learning with ancestral constraints (mainly path
existence here) can be formulated as:

mﬂifn F(W) subject to h(W) =0, pathi ~» j € G(W)

HOW TO CHARACTERIZE PATH EXISTENCE
DIFFERENTIALBLY AND EQUIVALENTLY?




Path Existence Characterization with Relaxation

Path Absence Characterization
d

> (W) =0

k=1
d " Relaxation

Y (IW")i; > e

k=1

Path Existence Characterization




[ssue of In-Equivalence to Path Existence

d

Consider H(W) = ReLU(e — p(W)), p(W)=> |W["

(P(W))i; =0 && i~ je G(W)

Under the edge thresholding process:

Edge (i,7) € G(W) < [W;;| > €0




[ssue of In-Equivalence to Path Existence

W1,3 =10.2 W3,2 =9

Lemma 1. (Sufficient Condition) There exists a finite thresh-
®__) 3 )@ old f(eo,0) > €y such that (p(W)); ; = 0 is sufficient to

guarantee path existence x; ~» v; € G(W) under edge

Edge threshold ¢y = 0.3 relaxation in Equation (14) if and only if ¢ > f(€g, o).
Path threshold e = 0.9
(P(W))12 > [W]15|W]sz = 1.0 In-Sufficiency If € < f(eo, o)

(P(W))12 = ReLU(0.9 — (p(W))1.2) =

0 ,_ B _ _
(W13 < 0.3 = Edge (1,3) £ G(W) (p(W))i,j =01~ jc G(W)

= Path (1,3,2) ¢ W)  if without sufficiently large €
(p(W))12 =0but Path 1 ~» 2 ¢ G(W)




[ssue of In-Equivalence to Path Existence

Lemma 2. (Necessary Condition) The continuous equality

| | | (p(W))i; = 0 is necessary for the path existence x; ~
3 z; € G(W) under edge relaxation in Equation (14) if and
only if e < min(eg, €d).

Edge threshold ¢y = 0.3

Path threshold e = 0.9 Un'NeceSSity If € > miﬂ((-:(], Gg)
(ﬁ(W))l,z - ReLU(09 — 0.5 x 05) = 0.65
Edges (1,3), (3,2) € G(W) i~ jeGW)= (p(W));; =0

= Path (1,3,2) € G(W)
Path1l ~ 2 € G(W) but (ﬁ(W))l,z 75 0

if without sufficiently small €




[ssue of In-Equivalence to Path Existence

(W) = ReLU(e — p(W)) = 0 for Path Existence

Necessity Sufficiency
5 5
min (g, €2) fleo,0) e

NO € TO SATISFY BOTH NECESSITY AND SUFFICENCY



Equivalent Path Existence Characterization

Binary b(W) € {0, 1}dXd 1 For Path Absence and 0 For Path Existence
Neccesity Assurance: Path ¢ ~» j € G(W) = (b(W));; =0= (p(W));; =0



Equivalent Path Existence Characterization

p(W) = p(W) o (W) = 0 for Path Existence
Necessity Assurance For Alle  Sufficiency
O >
f (607 J) €
SUFFICINETLY LARGE € TO SATISFY
BOTH NECESSITY AND SUFFICENCY

Binary b(W) € {0, 1}dXd 1 For Path Absence and 0 For Path Existence
Neccesity Assurance: Path ¢ ~» j € G(W) = (b(W));; =0= (p(W));; =0



Equivalent Path Existence Characterization

Theorem 1. There exists at least one directed path from
z; to x; in G(W) constructed by Equation (14) if and only
if (p(W));.; =0, where p(W) is defined by Equation (16)
with € > f(eg, o) for some finite f(eg, o).

p(W) = p(W) o b(W)

b(W) =1 (Z (I((W] > €))" = 0)

k=1

5(W) = ReLU(e — p(W)), p(W ZIWI"”’



Order Violation Among Paths

Order Violation Between Path S; ~» E7 and S5 ~ E5



Order Violation Among Paths

Fail the recovery of 53 ~» E5 due to Acyclicity



Solution: Order-Guided Optimization

Wo: No Order-Violating Path Exists!

Impose Partial Order Constraint
S1 < E1, 89 < E5 Implied by Paths



Solution: Order-Guided Optimization

Avoid Order Violation with Initialization W

Solving the Path Existence-Constrained Issue
Starting from Order-Guided Optima W



Overall Alagrithm

Algorithm 1 Differentiable Structure Learning with Path
Existence Constraints

Require: Data D, binary mask A € {0,1}?%¢ of path-

existence constraints, edge threshold e . 1 1
1: Define backbone model: M (L, h, Wg), with data-fit GOAL. SOIVG Sthture leamlng Wlth path

loss L, acyclicity loss h, and structure parameters Wy. existence COIlStraiIltS A E {0’ 1 } dxd

2: Define path existence loss:

U= L+ Y (p(W)oA)

STEP 1: Solve structure learning with partial
order constraints A and derive W),.

3: Define order-based acyclicity loss:
ho=h+ 3 (p(W) o (AT)7)
4 Solve order-based optimization (initializing from zero): This task has been addressed by a previous work
W, MoD,0), whete My(L. o, We) "Differentiable structure learning with partial orders."

5: Solve path existence-based optimization using the order-

based optimization result WV, as initialization: STEP 2: SOIVG structure leamlng Wlth path
Wy = Mp(D, W), where  Mp{L', h, We) existence constraints A with init point Wy.

6: Threshold learned structure:
Wp A= ][(|Wp| iy 60)

7: Return Final learned structure W,







