Multivariate Conformal Selection

Tian Bai Yue Zhao Xiang Yu Archer Y. Yang

ICML 2025

July 4, 2025

Problem Setup

- lacktriangleq p-dimensional features $oldsymbol{x}$
- \blacksquare d-dimensional response y
- i.i.d. Data
 - Training $\mathcal{D}_{\text{train}} = \{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^n$
 - Test $\mathcal{D}_{\text{test}}$ = $\{x_{n+j}\}_{j=1}^m$, unobserved $\{y_{n+j}\}_{j=1}^m$
- Goal: to identify a subset $S \subseteq \{1, ..., m\}$ from $\mathcal{D}_{\text{test}}$, s.t. as many test obs. $j \in S$ as possible satisfy

$$y_{n+j} \in R$$

where $R \in \mathbb{R}^d$ is a predefined region, with *FDR control*.

Generalizes Jin and Candès, 2023, which works for univariate response (d = 1).

2

Problem Setup

■ False discovery rate (FDR):

$$\mathsf{FDR} = \mathbb{E}\bigg[\frac{|\mathcal{S} \cap \mathcal{H}_0|}{|\mathcal{S}|}\bigg] \le q$$

should be controlled, where $\mathcal{H}_0 = \{j : y_{n+j} \notin R\}$.

 \blacksquare A good selection procedure \mathcal{S} gives high power:

Power =
$$\mathbb{E}\left[\frac{|\mathcal{S} \cap \mathcal{H}_1|}{|\mathcal{H}_1|}\right]$$

where $\mathcal{H}_1 = \{j : y_{n+j} \in R\}.$

3

Multivariate Conformal Selection

■ For $j \in \{1, ..., m\}$, mCS performs

$$H_{0j}: \boldsymbol{y}_{n+j} \in \boldsymbol{R}^c$$
 vs. $H_{1j}: \boldsymbol{y}_{n+j} \in \boldsymbol{R}$

- mCS consists of three main steps:
 - **1 Training:** Construct a predictive model $\hat{\mu}$ for y.
 - 2 Calibration:
 - Build a regionally monotone nonconformity score based on $\hat{\mu}$.
 - 2 Compute the conformal p-value for the tests
 - 3 Thresholding: Apply the BH procedure

Oracle Conformal *p*-values

- Assuming a nonconformity score $V: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, a measure of atypicality of the pair (x, y),
- *Oracle* conformal *p*-values: if the true $\{y_{n+j}\}_{j=1}^m$ were observed,

$$p_j^* = \frac{\sum_{i=1}^n \mathbb{1}\{V_i < V_{n+j}\} + 1}{n+1}$$

where $V_i = V(\boldsymbol{x}_i, \boldsymbol{y}_i)$ for i = 1, ..., n + m.

Practical Conformal p-values

- *Oracle* conformal p-values requires knowing unobserved y_{n+j} .
- In practice, replace V_{n+j} with

$$\widehat{V}_{n+j} = V(\boldsymbol{x}_{n+j}, |\boldsymbol{r}_{n+j}|),$$

where r_{n+i} is an arbitrarily chosen in R.

■ (Practical) conformal p-values

$$p_j = \frac{\sum_{i=1}^n \mathbb{1}\{V_i < \widehat{V}_{n+j}\} + 1}{n+1}.$$

Regional Monotonicity

 By i.i.d. data assumption, Oracle conformal p-values is super-uniform (Vovk et al., 2005)

$$\mathbb{P}(p_j^* \le \alpha) \le \alpha$$

To ensure

$$\mathbb{P}(p_i \le \alpha) \le \alpha$$

V must satisfy regional monotonicity.

■ Regional Monotonicity (RM):

$$V(x, y') \le V(x, y)$$
 for any $y' \in R^c$ and $y \in R$

Choices of Nonconformity Score

- The selection power heavily depends on the quality of the chosen score.
- In the context of CP (Romano et al., 2019; Kivaranovic et al., 2020; Sesia & Candes, 2020).
- Limited focus for CS.

Two Types of RM Scores

■ Distance-based scores (clipped score, Jin and Candes, 2023):

$$V(\boldsymbol{x}, \boldsymbol{y}) = M \cdot \mathbb{1}\{\boldsymbol{y} \notin \boldsymbol{R}^c \cup \partial \boldsymbol{R}\} - \inf_{\boldsymbol{s} \in \boldsymbol{R}^c} \|\boldsymbol{y} - \boldsymbol{s}\|_p,$$

■ Learning-based scores (Stutz et al., 2021, Xie et al., 2024):

$$V^{\theta}(\boldsymbol{x}, \boldsymbol{y}) = M \cdot \mathbb{1}\{\boldsymbol{y} \notin R^{c} \cup \partial R\} - f_{\theta}(\boldsymbol{x}, \boldsymbol{y}; R)$$

Distance-based Scores

- The second term $\inf_{s \in R^c} ||y s||_p$ measures the distance between $\hat{\mu}(x)$ and R^c :
 - If $\hat{\mu}(x)$ moves away from R^c
 - \blacksquare Then the distance increases, leading to smaller test scores \widehat{V}_{n+j} and smaller p-values
 - lacksquare Thus, data with y in the interior of R are more likely to be selected by the BH.
- Selecting r_{n+j} on ∂R is optimal for power.

Learning-based Nonconformity Scores

For distance-based scores:

- \blacksquare Low power when R is a nonconvex;
- Constructing a closed-form distance function can be challenging when R is irregular.

Learning-based Nonconformity Scores

■ mCS-learn learn an optimal nonconformity score within the family:

$$V^{\theta}(\boldsymbol{x}, \boldsymbol{y}) = M \cdot \mathbb{1}\{\boldsymbol{y} \notin R^{c} \cup \partial R\} - f_{\theta}(\boldsymbol{x}, \boldsymbol{y}; R)$$

- $f_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is a function from a specific ML class, e.g.
 - Kernel machines
 - Gradient boosting
 - Neural networks, etc.

Learning score function f_{θ}

- Introduce a differentiable loss function that mimics the non-differentiable mCS procedure.
- "hard" ranking is replaced with soft-ranking (Blondel et al., 2020; Cuturi et al., 2019).
- Use two hold-out datasets $\mathcal{D}_{f\text{-train}}$ and $\mathcal{D}_{f\text{-val}}$ (can be obtained by data splitting) for training f_{θ} .

Smooth conformal *p*-values

- Sample two disjoint subsets $\mathcal{D}_{f\text{-train1}}$ and $\mathcal{D}_{f\text{-train2}}$ from $\mathcal{D}_{f\text{-train2}}$
- Let $n' = |\mathcal{D}_{f\text{-train1}}|$ and $m' = |\mathcal{D}_{f\text{-train2}}|$
- soft-rank(a; A) ≡ the softened rank of element a within the set A.
- The smooth conformal p-values for j = 1, ..., m'

$$\overline{p_j^{\theta}} = \frac{\mathsf{soft\text{-}rank}\big(\widehat{V}_{n'+j}^{\theta}; \{V_i^{\theta}\}_{i=1}^{n'} \cup \{\widehat{V}_{n'+j}^{\theta}\}\big)}{n'+1}.$$

- Loss function
 - $L(\theta) = \sum_{j=1}^{m'} \bar{p}_j^{\theta} \left[\mathbb{1}(\boldsymbol{y}_{n+j} \in \boldsymbol{R}) \gamma \cdot \mathbb{1}(\boldsymbol{y}_{n+j} \in \boldsymbol{R}^c) \right].$
 - $L(\theta) = -\bar{S}(\theta)$, the BH outcome with the smooth p-values.

Learning-based mCS Algorithm

- 1: Initialize parameters $\theta = \theta_0$.
- 2: **for** epoch $t = 1, \ldots, T$ **do**
- 3: Sample two disjoint subsets $\mathcal{D}_{f ext{-train1}}^{(t)}$ and $\mathcal{D}_{f ext{-train2}}^{(t)}$.
- 4: Use the current f_{θ} to obtain V_i^{θ} from $\mathcal{D}_{f\text{-train1}}^{(t)}$ and $\widehat{V}_{n+j}^{\theta}$ from $\mathcal{D}_{f\text{-train1}}^{(t)}$.
- 5: Compute the smooth conformal p-values \bar{p}_i^{θ} and the loss function.
- 6: Update model parameters $\theta = \theta_t$.
- 7: Applying mCS on $\mathcal{D}_{f\text{-val}}$ k times and record the average power.
- 8: end for
- 9: Use $\mathcal{D}_{f\text{-val}}$ for validation to obtain the optimal epoch t^* .
- 10: Return $f_{\theta_{*}}$.

ADMET Data

- ADMET dataset, compiled from various public sources (Wenzel et al., 2019; Iwata et al., 2022; Kim et al., 2023; Watanabe et al., 2018; Falcon-Cano et al., 2022; Esposito et al., 2020; Braga et al., 2015; Aliagas et al., 2022; Perryman et al., 2020; Meng et al., 2022; Vermeire et al., 2022).
- $n = 20K \sim 200K$
- Biological activities $y \in \mathbb{R}^d$, d = 15
- Molecular structure-derived features $x \in \mathbb{R}^{1024}$
- Two selection tasks
 - 1 The (shifted) first orthant, $R = \{y : y_k \ge c_k \ \forall k\}$
 - A sphere centered at c, $R = \{y : ||y c||_2 \le r\}$

Baseline methods

- CS_int Rectangular target region $S = \bigcap_{k=1}^{d} S_k$, each dimension controlled by $q_k = q$
- CS_ib Like CS_int, but controlled by $q_k = q/d$ (too conservative)
- \blacksquare CS_is Like CS_int, but controlled by an adaptive q_k (Sheridan)
- binary Univariate CS with pseudo outcomes $\tilde{y}_i = \mathbb{1}(y_i \in R)$

Performance Comparison

Table 19: Observed FDR of different methods for the first drug discovery task.

q	CS_int	CS_ib	CS_is	bi	mCS-d, score (7)	mCS-d, score (8)	mCS-1
0.3	0.760	0.000	0.303	0.038	0.290	0.304	0.275
0.5	0.782	0.393	0.496	0.040	0.417	0.499	0.488

Table 20: Observed power of different methods for the first drug discovery task.

q	CS_int	CS_ib	CS_is	bi	mCS-d, score (7)	mCS-d, score (8)	mCS-1
0.3	0.993	0.000	0.019	0.000	0.003	0.006	0.010
0.5	1.000	0.003	0.225	0.000	0.159	0.433	0.193

Table 21: Observed FDR of different methods for the second drug discovery task.

q	bi	mCS-d, score (7)	mCS-d, score (8)	mCS-1
0.3	0.000	0.207	0.300	0.293
0.5		0.338	0.499	0.498

Table 22: Observed power of different methods for the second drug discovery task.

q	bi	mCS-d, score (7)	mCS-d, score (8)	mCS-1
0.3	0.000	0.139	0.278	0.086
0.5	0.000	0.382	0.759	0.515

