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Problem Setup

p-dimensional features x

d-dimensional response y

i.i.d. Data

Training Dtrain = {xi,yi}ni=1
Test Dtest = {xn+j}mj=1, unobserved {yn+j}mj=1

Goal: to identify a subset S ⊆ {1, . . . ,m} from Dtest, s.t. as many test

obs. j ∈ S as possible satisfy

yn+j ∈ R

where R ∈ Rd is a predefined region, with FDR control.

Generalizes Jin and Candès, 2023, which works for univariate

response (d = 1).
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Problem Setup

False discovery rate (FDR):

FDR = E[∣S ∩H0∣
∣S∣ ] ≤ q

should be controlled, where H0 = {j ∶ yn+j ∉ R}.

A good selection procedure S gives high power:

Power = E[∣S ∩H1∣
∣H1∣

]

where H1 = {j ∶ yn+j ∈ R}.
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Multivariate Conformal Selection

For j ∈ {1, . . . ,m}, mCS performs

H0j ∶ yn+j ∈ R
c vs. H1j ∶ yn+j ∈ R

mCS consists of three main steps:

1 Training: Construct a predictive model µ̂ for y.

2 Calibration:

1 Build a regionally monotone nonconformity score based on µ̂.

2 Compute the conformal p-value for the tests

3 Thresholding: Apply the BH procedure



Oracle Conformal p-values

Assuming a nonconformity score V ∶ X × Y → R, a measure of

atypicality of the pair (x, y),

Oracle conformal p-values: if the true {yn+j}mj=1 were observed,

p
∗
j =

∑n
i=1 1{Vi < Vn+j} + 1

n + 1

where Vi = V (xi,yi) for i = 1, . . . , n +m.



Practical Conformal p-values

Oracle conformal p-values requires knowing unobserved yn+j .

In practice, replace Vn+j with

V̂n+j = V (xn+j , rn+j ),

where rn+j is an arbitrarily chosen in R.

(Practical) conformal p-values

pj =
∑n

i=1 1{Vi < V̂n+j} + 1

n + 1
.



Regional Monotonicity

By i.i.d. data assumption, Oracle conformal p-values is super-uniform

(Vovk et al., 2005)

P(p∗j ≤ α) ≤ α

To ensure

P(pj ≤ α) ≤ α

V must satisfy regional monotonicity.

Regional Monotonicity (RM):

V (x,y′) ≤ V (x,y) for any y
′
∈ R

c and y ∈ R



Choices of Nonconformity Score

The selection power heavily depends on the quality of the chosen

score.

In the context of CP (Romano et al., 2019; Kivaranovic et al., 2020;

Sesia & Candes, 2020).

Limited focus for CS.



Two Types of RM Scores

Distance-based scores (clipped score, Jin and Candes, 2023):

V (x,y) = M ⋅ 1{y ∉ R
c
∪ ∂R} − inf

s∈Rc
∥y − s∥p,

Learning-based scores (Stutz et al., 2021, Xie et al., 2024):

V
θ(x,y) = M ⋅ 1{y ∉ R

c
∪ ∂R} − fθ(x,y;R)



Distance-based Scores

The second term infs∈Rc ∥y − s∥p measures the distance between

µ̂(x) and R
c:

If µ̂(x) moves away from R
c

Then the distance increases, leading to smaller test scores V̂n+j and

smaller p-values

Thus, data with y in the interior of R are more likely to be selected by the

BH.

Selecting rn+j on ∂R is optimal for power.



Learning-based Nonconformity Scores

For distance-based scores:

Low power when R is a nonconvex;

Constructing a closed-form distance function can be challenging when

R is irregular.



Learning-based Nonconformity Scores

mCS-learn learn an optimal nonconformity score within the family:

V
θ(x,y) = M ⋅ 1{y ∉ R

c
∪ ∂R} − fθ(x,y;R)

fθ ∶ X × Y → R is a function from a specific ML class, e.g.

Kernel machines

Gradient boosting

Neural networks, etc.



Learning score function fθ

Introduce a differentiable loss function that mimics the

non-differentiable mCS procedure.

“hard” ranking is replaced with soft-ranking (Blondel et al., 2020;

Cuturi et al., 2019).

Use two hold-out datasets Df -train and Df -val (can be obtained by data

splitting) for training fθ.



Smooth conformal p-values

Sample two disjoint subsets Df -train1 and Df -train2 from Df -train

Let n′
= ∣Df -train1∣ and m

′
= ∣Df -train2∣

soft-rank(a;A) ≡ the softened rank of element a within the set A.

The smooth conformal p-values for j = 1, . . . ,m
′

p̄
θ
j =

soft-rank(V̂ θ
n′+j ; {V

θ
i }n

′

i=1 ∪ {V̂ θ
n′+j})

n′ + 1
.

Loss function

L(θ) = ∑m
′

j=1 p̄
θ
j[1(yn+j ∈ R) − γ ⋅ 1(yn+j ∈ R

c)].
L(θ) = −S̄(θ), the BH outcome with the smooth p-values.



Learning-based mCS Algorithm

1: Initialize parameters θ = θ0.

2: for epoch t = 1, . . . , T do

3: Sample two disjoint subsets D(t)
f -train1 and D(t)

f -train2.

4: Use the current fθ to obtain V
θ
i from D(t)

f -train1 and V̂
θ
n+j from D(t)

f -train1.

5: Compute the smooth conformal p-values p̄
θ
j and the loss function.

6: Update model parameters θ = θt.

7: Applying mCS on Df -val k times and record the average power.

8: end for

9: Use Df -val for validation to obtain the optimal epoch t
∗.

10: Return fθt∗ .



ADMET Data

ADMET dataset, compiled from various public sources (Wenzel et al.,

2019; Iwata et al., 2022; Kim et al., 2023; Watanabe et al., 2018;

Falcon-Cano et al., 2022; Esposito et al., 2020; Braga et al., 2015;

Aliagas et al., 2022; Perryman et al., 2020; Meng et al., 2022;

Vermeire et al., 2022).

n = 20K ∼ 200K

Biological activities y ∈ Rd, d = 15

Molecular structure-derived features x ∈ R1024

Two selection tasks

1 The (shifted) first orthant, R = {y ∶ yk ≥ ck ∀k}
2 A sphere centered at c, R = {y ∶ ∥y − c∥2 ≤ r}
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Baseline methods

CS_int Rectangular target region S = ∩d
k=1Sk, each dimension

controlled by qk = q

CS_ib Like CS_int, but controlled by qk = q/d (too conservative)

CS_is Like CS_int, but controlled by an adaptive qk (Sheridan)

binary Univariate CS with pseudo outcomes ỹi = 1(yi ∈ R)



Performance Comparison
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Thank you!


