

How does Labeling Error Impact Contrastive Learning? A Perspective from Data Dimensionality Reduction

Jun Chen

Huazhong Agricultural University, Wuhan, China cj850487243@163.com

Jun. 2025

This work is jointed with Hong Chen, Yonghua Yu, and Yiming Ying.

Self-supervised Learning

By context^[1]

Self-supervised Learning

By context^[1]

By time series^[2]

^[1] C. Doersch, A. Gupta, A. Efros. Unsupervised visual representation learning by context prediction. IEEE International Conference on Computer Vision (ICCV), 2015.

^[2] X. Wang, G. Abhinav. Unsupervised learning of visual representations using videos. IEEE International Conference on Computer Vision (ICCV), 2015: 2794-2802.

Self-supervised Learning

• By context^[1]

By time series^[2]

• By contrastive^[3]

[1] C. Doersch, A. Gupta, A. Efros. Unsupervised visual representation learning by context prediction. IEEE International Conference on Computer Vision (ICCV), 2015.

[2] X. Wang, G. Abhinav. Unsupervised learning of visual representations using videos. IEEE International Conference on Computer Vision (ICCV), 2015: 2794-2802.

[3] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual representations. ICML, 2020.

Contrastive Learning

[3] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual representations. ICML, 2020.

Untrustworthy Phenomena

False Positive Samples^[4]

False Negative Samples^[5]

Soft Negative Samples Mining^[6]

Positive Sample Pair

Negative Samples

^[4] J. HaoChen, C. Wei, A. Gaidon, and T. Ma. Provable guarantees for self-supervised deep learning with spectral contrastive loss. NeurIPS, 2021.

^[5] S. Arora, H. Khandeparkar, M. Khodak, O. Plevrakis, and N. Saunshi. A theoretical analysis of contrastive unsupervised representation learning. ICML, 2019.

^[6] S. Lee, T. Park, and K. Lee. Soft contrastive learning for time series. ICLR, 2024.

Untrustworthy Phenomena

False Positive Samples^[4]

False Negative Samples^[5]

Soft Negative Samples Mining^[6]

Positive Sample Pair

Negative Samples

^[4] J. HaoChen, C. Wei, A. Gaidon, and T. Ma. Provable guarantees for self-supervised deep learning with spectral contrastive loss. NeurIPS, 2021.

^[5] S. Arora, H. Khandeparkar, M. Khodak, O. Plevrakis, and N. Saunshi. A theoretical analysis of contrastive unsupervised representation learning. ICML, 2019.

^[6] S. Lee, T. Park, and K. Lee. Soft contrastive learning for time series. ICLR, 2024.

False Positive Samples

Augmentation overlap^[7]

Intra-class overlap

Definition 1 (Augmentation Overlap)

Given a collection of augmentation strategies \mathcal{T} , we say that two original samples $\bar{x}, \bar{x}' \in \bar{\mathcal{D}}$ are \mathcal{T} -augmentation overlapped if they have overlapped views, i.e., $\exists t, t' \in \mathcal{T}$ such that $t(\bar{x}) = t'(\bar{x}')$.

Assumption (Label Consistency)[7]

For any $x, x^+ \sim p(x, x^+)$, we assume the labels are deterministic (one-hot) and consistent: $p(y|x) = p(y|x^+)$.

Without false positive samples

[7] Y. Wang, Q. Zhang, Y. Wang, J. Yang, and Z. Lin. Chaos is a ladder: A new theoretical understanding of contrastive learning via augmentation overlap. In International Conference on Learning Representations (ICLR), 2022.

False Positive Samples

Augmentation overlap^[7]

Assumption 1 (Labeling Error)

For any $\bar{x}=\bar{\mathcal{D}}$, its its latent label $y_{\bar{x}}$, and its augmented sample $x\sim p(\cdot|\bar{x})$, we assume that the true label of x is not consistent with $y_{\bar{x}}$ with the probability $\alpha\in(0,1)$. That is,

$$\mathbb{E}_{\bar{x}\in\bar{\mathcal{D}},x\sim p(\cdot|\bar{x})}\left[\mathbb{I}\left[y_x\neq y_{\bar{x}}\right]\right]=\alpha.$$

Inter-class overlap (caused by false positive samples)

[7] Y. Wang, Q. Zhang, Y. Wang, J. Yang, and Z. Lin. Chaos is a ladder: A new theoretical understanding of contrastive learning via augmentation overlap. In International Conference on Learning Representations (ICLR), 2022.

Bound of Classification Risk

Theorem 1 (Bounds of Mean Classification Risk)

Let the labeling error assumption hold. For any $f \in \mathcal{F}_1, g \in \mathcal{F}_2$, the gap between the mean downstream classification risk and the contrastive risk $\mathcal{L}_{CE}(g_{f,\mu}) + \log\left(\frac{M}{K}\right) - \mathcal{L}_{InfoNCE}(f)$ can be upper bounded by

$$\boxed{\mathbb{E}_{p(x,y_{\bar{x}}^{\neg})}\left[f(x)^{\top}\mu_{y_{\bar{x}}}\right] + \sqrt{V_{y_{\bar{x}}^{\neg}}(f(x)|y_{\bar{x}})} + \sqrt{V(f(x)|y_{\bar{x}})} + \mathcal{O}\left(M^{-\frac{1}{2}}\right)}$$

and lower bounded by

$$\mathbb{E}_{p(x,x^+,y_{\bar{x}}^-)} \left[f(x)^\top f(x^+) \right] - \sqrt{V(f(x)|y_{\bar{x}})} - \frac{1}{2} V(f(x)|y_{\bar{x}}) - \left(\frac{1}{2} V(f(x^-)|y^-) - \mathcal{O}\left(M^{-\frac{1}{2}}\right), \right)$$

where $V_{y_{\overline{x}}}(f(x)|y_{\overline{x}}) = \mathbb{E}_{p(x,y_{\overline{x}})}\left[\|f(x) - \mu_{y_{\overline{x}}}\|^2\right]$, $V(f(x)|y_{\overline{x}}) = \mathbb{E}_{p(x,y_{\overline{x}})}\left[\|f(x) - \mu_{y_{\overline{x}}}\|^2\right]$, $V(f(x^-)|y^-) = \mathbb{E}_{p(x,y^-)}\left[\|f(x) - \mu_{y^-}\|^2\right]$ are the conditional intra-class variances of the representations of false positive, true positive and negative augmented samples, respectively.

Result Analysis

$$\mathbb{E}_{p(x,y_{\bar{x}}^{-})}\left[f(x)^{\top}\mu_{y_{\bar{x}}}\right]$$

$$\mathbb{E}_{p(x,x^+,y_{\bar{x}}^-)}\left[f(x)^\top f(x^+)\right]$$

$$V_{y_{\bar{x}}}(f(x)|y_{\bar{x}}) = \mathbb{E}_{p(x,y_{\bar{x}})} \left[\|f(x) - \mu_{y_{\bar{x}}}\|^2 \right]$$

 $V(f(x^{-})|y^{-}) = \mathbb{E}_{p(x,y^{-})} \left[\|f(x) - \mu_{y^{-}}\|^{2} \right]$

V(f(x)|y)

Positive Augmented Samples

Negative Augmented Samples

Data Dimensionality Reduction (SVD)

Definition 2 (Singular Value Decomposition)

For a matrix $X \in \mathbb{R}^{m \times m'}$ (without of loss generality, we let $m \leq m'$), its SVD equation is $X = USV^{\top}$, where $U = [u_1, ..., u_m] \in \mathbb{R}^{m \times m} (V = [v_1, ..., v_{m'}] \in \mathbb{R}^{m' \times m'})$ is the left (right) singular matrix with m(m') orthonormal column vectors (eigen vectors of $XX^{\top}(X^{\top}X)$), $S = [diag(s_1, ..., s_m), \mathbf{0}]$ is composed of a diagonal matrix $diag(s_1, ..., s_m) \in \mathbb{R}^{m \times m}$ and a zero matrix $\mathbf{0}$ with size $m \times (m' - m)$, s_i denotes the i-th largest singular value, $s_1 \geq s_2 \geq ... \geq s_m \geq 0$.

[8] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:211–218, 1936.

Data Dimensionality Reduction (SVD)

Lemma 1 (Eckart-Young Theorem^{[8])}

Let X be a $m \times m'$ matrix of rank $r \in [m]$ which has complex elements. Let P_q be the set of all $m \times m'$ matrices with rank $q \in [r]$. Then for all matrices B in P_q , there holds $\left\|X - \hat{X}_q\right\|_F \leq \|X - B\|_F$.

- Eckart-Young Theorem implies that the majority of the informational content is captured by the dominant singular subspace^[9].
- We assume by default that there is a positive correlation between the amount of information and the semantical relevance of information.

[8] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:211–218, 1936.

2025-6-7 Jun Chen 13

^[9] M. Kilmer, L. Horesh, H. Avron, and E. Newman. Tensor-tensor algebra for optimal representation and compression of multiway data. Proceedings of the National Academy of Sciences, 118, 2021.

Data Dimensionality Reduction (SVD)

• STL-10

• CIFAR-10

Raw Images

after taking SVD

Proposition 2

Let a sample and the corresponding sample after SVD be represented as the matrices $X, \hat{X}_q \in \mathbb{R}^{m \times m'}$. Assume that there are q^* singular values regrading the semantics-related information. When $q \geq q^*$, under the assumption of labeling error and the augmentation collection \mathcal{T} , the true label of the augmented sample of \hat{X}_q is not consistent with the latent label of X with the probability $\alpha_q \leq \alpha$. When $q < q^*$, the corresponding probability $\alpha_q > \alpha_{q^*}$.

[9] M. Kilmer, L. Horesh, H. Avron, and E. Newman. Tensor-tensor algebra for optimal representation and compression of multiway data. Proceedings of the National Academy of Sciences, 118, 2021.

Assumption 2

Let the assumption of labeling error hold. When performing SVD with the truncated value q the encoder f with the empirical InfoNCE loss $\hat{\mathcal{L}}_{InfoNCE}(f)$ can align any positive sample pair $(x,x^+)\sim p(x,x^+,y_{\bar{x}}^-)$ such that their distance in the embedding space lies within $[\epsilon(\alpha_{q^*}),\epsilon(\alpha_q)]$. For simplicity, let $\epsilon_{q^*}=\epsilon(\alpha_{q^*}),\epsilon_q=\epsilon(\alpha_q)$. Consequently, the alignment satisfies $\epsilon_{q^*}\leq \|f(x)-f(x^+)\|\leq \epsilon_q$.

Theorem 3

Given the condition of Theorem 1 and Assumption 2, after taking the optimal truncated SVD on the original dataset $\bar{\mathcal{D}}$, the mean downstream classification risk $\mathcal{L}_{CE}(g_{f,\mu})$ with the empirical optimal encoder f can be upper bounded by $\mathcal{L}_{InfoNCE}(f) + \epsilon_{q^*} + \epsilon_q - \frac{1}{2}\epsilon_{q^*}^2 + \mathcal{O}\left(M^{-\frac{1}{2}}\right) - \log\left(\frac{M}{eK}\right)$ and lower bouned by $\mathcal{L}_{InfoNCE}(f) - \epsilon_{q^*} - \epsilon_{q^*}^2 - \frac{1}{2}\epsilon_q^2 - \mathcal{O}\left(M^{-\frac{1}{2}}\right) - \log\left(\frac{M+1}{K}\right)$.

Experimental Results

Table 2. Downstream classification top-1 accuracies (%) of SimCLR ($\mathcal{L}_{InfoNCE}$) using the truncated SVD with different truncated parameter q.

τ	Encoder	Dataset	w/o SVD	q = 30	q=25	q = 20	q = 15	q = 10
\mathcal{T}_1	Resnet-18	CIFAR-10	68.82	69.48	69.75	69.87	69.01	68.26
\mathcal{T}_1	Resnet-50	CIFAR-10	63.20	63.36	63.96	62.23	60.97	60.06
RRC	Resnet-18	CIFAR-10	58.56	58.83	58.67	58.61	58.54	58.32
\mathcal{T}_1	Resnet-18	CIFAR-100	38.48	38.81	40.10	39.05	38.98	38.10
\mathcal{T}	Encoder	Dataset	w/o SVD	q = 90	q = 70	q = 50	q = 30	q = 10
\mathcal{T}_1	Resnet-18	STL-10	71.54	73.12	72.29	71.10	70.04	67.52

Table 4. Downstream classification top-1 accuracies (%) of SimCLR ($\mathcal{L}_{InfoNCE}$) on CIFAR-10 using the truncated SVD with different augmentations ($\mathcal{T}_2 = \{\mathcal{T}_1 + \text{Cutout}\}; \mathcal{T}_3 = \{\text{RRC}, \text{Cutout}, \text{Hide patch}\}; \mathcal{T}_4 = \{\text{RRC}, \text{Cutout}, \text{Color jitter}\}; \mathcal{T}_5 = \{\text{RRC}, \text{Cutout}\}; \mathcal{T}_6 = \{\text{RRC}(0.08, 0.5), \text{Cutout}\}; \mathcal{T}_7 = \{\text{RRC}(0.08, 0.5), \text{Cutout}(0.5, 1.0)\}$).

SVD	Encoder	\mathcal{T}_2	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_5	\mathcal{T}_6	\mathcal{T}_7	RRC(0.08,0.5)
w.o. SVD	Resnet-18	62.90	50.53	60.00	56.67	54.97	54.09	57.11
q = 30	Resnet-18	64.86	51.00	61.57	57.85	55.69	54.75	58.10

Definition 3 (Augmentation Graph [4])

Given an original dataset $\bar{\mathcal{D}}$ and an augmentation collection \mathcal{T} , there exist n augmented samples that form the augmentation dataset $\mathcal{D}_{aug}=\{x|x=t(\bar{x}),\bar{x}\in\bar{\mathcal{D}},t\in\mathcal{T}\}$. An augmentation graph \mathcal{G} is obtained by taking the n augmented samples as the graph vertices and assuming there exists an edge between two vertices $x,x'\in\mathcal{D}_{aug}$ (if they can be generated from a random original sample $\bar{x}\in\bar{\mathcal{D}}$.)

According to spectral graph theory, we define $A \in \mathbb{R}^{n \times n}$ as the adjacency matrix of the augmentation graph \mathcal{G} . For two augmented samples $x, x' \in \mathcal{D}_{aug}$, the element A(x,x') denotes the marginal probability of generating x,x' from a random original sample $\bar{x} \in \bar{\mathcal{D}}$. Formally, $A(x,x') = \mathbb{E}_{\bar{x} \in \bar{\mathcal{D}}}\left[p(x|\bar{x})p(x'|\bar{x})\right]$. The corresponding normalized graph Laplacian matrix is $L = I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$, where D represents a diagonal degree matrix with the diagonal element $D_{x,x} = \sum_{x' \in \mathcal{D}_{aug}} A(x,x')$. The eigenvalues of L are denoted as $\{\lambda_i\}_{i=1}^n$, where $0 = \lambda_1 < ... < \lambda_n < 2$.

[4] J. HaoChen, C. Wei, A. Gaidon, and T. Ma. Provable guarantees for self-supervised deep learning with spectral contrastive loss. NeurIPS, 2021.

Definition 3 (Augmentation Graph)

Given an original dataset $\bar{\mathcal{D}}$ and an augmentation collection \mathcal{T} , there exist n augmented samples that form the augmentation dataset $\mathcal{D}_{aug}=\{x|x=t(\bar{x}), \bar{x}\in\bar{\mathcal{D}}, t\in\mathcal{T}\}$. An augmentation graph \mathcal{G} is obtained by taking the n augmented samples as the graph vertices and assuming there exists an edge between two vertices $x,x'\in\mathcal{D}_{aug}$ (if they can be generated from a random original sample $\bar{x}\in\bar{\mathcal{D}}$.)

Theorem 4

Let the assumption of labeling error hold. For the empirical optimal encoder f^* , after taking the truncated SVD with hyper-parameter q on the original dataset $\bar{\mathcal{D}}$, there exists a linear head W with norm $\|W^*\|_F \leq 1/(1-\lambda_{k,q})$ such that $\mathcal{E}(f^*,W^*) \leq \frac{4\alpha_q \downarrow}{\lambda_{k+1,q}} + 8\alpha_q \downarrow \qquad \qquad \text{Maybe } \lambda_{k+1,q} \leq \lambda_{k+1}$

where k denotes the dimension of embedding space and $\lambda_{k+1,q}$ denotes the k+1-th eigenvalues of L.

Augmentation Suggestion

- Wang et al,.[10] suggested: Weak augmentation + Data inflation
- We suggest: Weak augmentation + Data inflation + SVD

Table 5. Downstream classification top-1 accuracies (%) of SimCLR (\mathcal{L}_{spe}) on CIFAR-10 using the truncated SVD with different q or the data inflation strategy under the weak data augmentation adopted by Wang et al. (2024) ($\mathcal{T}_8 = \{RRC(0.2, 1.0), Color jitter(0.5, 0.4), Random horizontal flip, Random grayscale, Gaussian blur<math>\}$).

\mathcal{T}	Encoder	Inflation	w/o SVD	q = 30	q=25	q = 20	q = 15	q = 10
\mathcal{T}_8	Resnet-18	71.54	71.21	71.64	71.65	71.11	70.41	67.83
$\overline{\tau}$	Encoder	Inflation	Inflation + $(q = 30)$		Inflation + $(q = 25)$		Inflation + $(q = 20)$	
\mathcal{T}_8	Resnet-18	71.54	71.64		72.55		71.19	

[10] Y. Wang, J. Zhang, and Y. Wang. Do generated data always help contrastive learning? In International Conference on Learning Representations (ICLR), 2024.

Augmentation Suggestion

- Wang et al,.[10] suggested: Weak augmentation + Data inflation
- We suggest: Weak augmentation + Data inflation + SVD + moderate embedding dimension

Table 7. Downstream classification top-1 accuracies (%) of SimCLR (\mathcal{L}_{spe}) using the truncated SVD (q=30 for CIFAR-10 and CIFAR-100, q=90 for STL-10) with different embedding dimension k.

τ	Encoder	Dataset	Embedding Dimension						
			k = 128	k = 256	k = 512	k = 1024	k = 2048		
\mathcal{T}_1	Resnet-18	CIFAR-10	67.71	68.51	68.54	69.09	68.65		
\mathcal{T}_1	Resnet-50	CIFAR-10	67.43	65.99	66.50	66.83	66.22		
\mathcal{T}_1	Resnet-18	CIFAR-100	35.00	36.68	36.78	37.78	37.18		
\mathcal{T}_1	Resnet-50	CIFAR-100	35.46	35.42	35.39	35.59	35.53		
\mathcal{T}_1	Resnet-18	STL-10	72.35	72.42	73.12	73.88	73.47		
\mathcal{T}_1	Resnet-50	STL-10	74.68	74.94	75.01	76.26	75.57		

[10] Y. Wang, J. Zhang, and Y. Wang. Do generated data always help contrastive learning? In International Conference on Learning Representations (ICLR), 2024.

Thanks

Jun Chen

Huazhong Agricultural University, Wuhan, China cj850487243@163.com

Jun. 2025