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Theoretical Impact of Labeling Error

® False Positive Samples

« Augmentation overlapl’! Definition 1 (Augmentation Overlap)

Given a collection of augmentation strategies 7, we say that two

original samples , T €D are ‘T -augmentation overlapped if they

Car =
have overlapped views, i.e., 3¢, ¢ € T such that t(z) = t'(z').

Assumption (Label Consistency)l]
+ +)

Pen <

Forany z,z" ~ p(x,x™), we assume the labels are deterministic

(one-hot) and consistent: p(y|z) = p(y|z™).

Intra-class overlap

Without false positive samples

[71 Y. Wang, Q. Zhang, Y. Wang, J. Yang, and Z. Lin. Chaos is a ladder: A new theoretical understanding of contrastive learning via augmentation overlap. In International Conference on
Learning Representations (ICLR), 2022.
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Theoretical Impact of Labeling Error

® False Positive Samples

« Augmentation overlapl’]

Assumption 1 (Labeling Error)

Forany x = D, its its latent label Yz, and its augmented sample

o

. z ~ p(-|T), we assume that the true label of 2 is not consistent
1 Augmentation 1 with ¥z with the probability a € (0,1). That is,
Ezed amp(lz) L Ye # yzl] = @
f- ~ 7/.‘
- \
- ) .

Inter-class overlap
(caused by false positive samples)

[71 Y. Wang, Q. Zhang, Y. Wang, J. Yang, and Z. Lin. Chaos is a ladder: A new theoretical understanding of contrastive learning via augmentation overlap. In International Conference on
Learning Representations (ICLR), 2022.
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Theoretical Impact of Labeling Error

® Bound of Classification Risk

Theorem 1 (Bounds of Mean Classification Risk)

Let the labeling error assumption hold. For any f € F1, g € F2, the gap between the mean downstream

M

?> — Lintonce(f) can be upper bounded by

[Epw,yw ]+ VVez (F@ls) + V(I @)z) + O (M—%)

and lower bounded by

classification risk and the contrastive risk Lcg(gy,,) + log (

N[~

(Byen i 1)1 |- VT — 3V U @loe) — 3V (7)) -0 (M-

).

where Vi (£(@)lyz) = Epeyz) [1£@) = s *], V(F@lgz) = Epa |1F@) = al], V(7)) =
10, =) [H f(x) — py- H } are the conditional intra-class variances of the representations of false positive, true

positive and negative augmented samples, respectively.
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Theoretical Impact of Labeling Error

® Result Analysis \

T fyz (2) :
L Ep(z,yz) Lf(2) “ya—:]] " ym
( Relationship among f(x) and p
Ep(ac,ac"‘,yg) [f(x)—rf(gj—i_)ﬂ “ -
~ 1
Vi (F@)Ny2) = Bpa g2y [1£(@) = . I°] NN
‘ = Positive Augmented Samples
x
x

V(f(@)ly)

a|
V(F(@)ly™) =Epay) [Hf(x) — - ||2} = Negative Augmented Samples
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Dimensionality Reduction as A New Perspective

® Data Dimensionality Reduction (SVD)

Definition 2 (Singular Value Decomposition)

For a matrix X e R™*™ (without of loss generality, we let m < m'), its SVD equation is X = USV |, where
U=[u,. .uUnp] € R™*™(V = [v1, ..., U] € Rm/xm/) is the left (right) singular matrix with m(m") orthonormal
column vectors (eigen vectors of XX ' (X ' X)), S = [diag(s1,-..,Sm), 0] is composed of a diagonal matrix
diag(s1, -, sm) € R™™™ and a zero matrix 0 with size m x (m’' —m), Si denotes the i-th largest singular

value, s1 > s9 > ... > s,, > 0.

[8] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:211-218, 1936.
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Dimensionality Reduction as A New Perspective

® Data Dimensionality Reduction (SVD)

Lemma 1 (Eckart-Young Theorem!8)

Let X be a m x m' matrix of rank r € [m] which has complex elements. Let P, be the set of all m X m’

matrices with rank g € [r]. Then for all matrices B in P,, there holds ||X — XqHF <X - B|p-

Eckart-Young Theorem implies that the majority of the informational content is captured by the dominant

singular subspacell.
We assume by default that there is a positive correlation between the amount of information and the

semantical relevance of information.

[8] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:211-218, 1936.
[9] M. Kilmer, L. Horesh, H. Avron, and E. Newman. Tensor-tensor algebra for optimal representation and compression of multiway data. Proceedings of the National Academy of Sciences, 118,

2021.
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Dimensionality Reduction as A New Perspective

® Data Dimensionality Reduction (SVD)

« STL-10 « CIFAR-10

70 4

Raw Images

after taking SVD

T T T T T T T T T T T T T T T
51,2 52,3 53,4 545 556 S6,7 57,8 58,9 59,10 510,11 511,12 512,13 515,16 521,22 531,32
Sj_;'
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Dimensionality Reduction as A New Perspective

Proposition 2

Let a sample and the corresponding sample after SVD be represented as the matrices X, f(q & [

Assume that there are ¢ singular values regrading the semantics-related information. When ¢ = q", under the
assumption of labeling error and the augmentation collection 7 , the true label of the augmented sample of Xq
is not consistent with the latent label of X with the probability &g < & When g < q*, the corresponding
probability &g > Qg=.

0 | ° |
k
1 q m
[9] M. Kilmer, L. Horesh, H. Avron, and E. Newman. Tensor-tensor algebra for optimal representation and compression of multiway data. Proceedings of the National Academy of Sciences, 118,
2021.
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Dimensionality Reduction as A New Perspective

Assumption 2

Let the assumption of labeling error hold. When performing SVD with the truncated value g the encoder f
with the empirical INfoNCE loss ﬁ[nfoNCE(f) can align any positive sample pair (z, ") ~ p(z,z™,y- ) such
that their distance in the embedding space lies within [€(c+ ), €(aq)]. For simplicity, let e« = €(ag+), €, = €(y).

Consequently, the alignment satisfies e,« < || f(z) — f(z7)|| < ¢,.

Theorem 3

Given the condition of Theorem 1 and Assumption 2, after taking the optimal truncated SVD on the original

dataset D , the mean downstream classification risk Lcg(gy,,,) with the empirical optimal encoder f can be

M
upper bounded by L, ronvor(f) + €4 + €4 — ; € + O (M ) log (e—) and lower bouned by

1 1 M +1
EInfoNC’E(f) — €gx — 62 - §€q - ( 2) log ( > .
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Dimensionality Reduction as A New Perspective

® Experimental Results

Table 2. Downstream classification top-1 accuracies (%) of SImMCLR (L, foncr) using the truncated SVD with different truncated
parameter q.

T Encoder Dataset w/oSVD ¢=30 ¢gq=25 ¢q=20 ¢q=15 q¢q=10
T1 Resnet-18 | CIFAR-10 68.82 69.48 69.75 69.87 69.01 68.26
71 | Resnet-50 | CIFAR-10 63.20 6336 63.96 6223 6097 60.06
RRC | Resnet-18 | CIFAR-10 58.56 58.83  58.67 58.61 5854  58.32
T1 Resnet-18 | CIFAR-100 38.48 38.81 40.10  39.05 38.98 38.10

T Encoder Dataset w/oSVD ¢=90 ¢q=70 ¢g=50 ¢g=30 ¢g=10
71 | Resnet-18 STL-10 71.54 7312 7229 71.10 70.04 67.52

Table 4. Downstream classification top-1 accuracies (%) of SimCLR (L, ;oncr) on CIFAR-10 using the truncated SVD with different
augmentations (72 = {71+ Cutout}; 73 = {RRC, Cutout, Hide patch}; 712 = {RRC, Cutout, Color jitter}; 75 = {RRC, Cutout};
Te = {RRC(0.08, 0.5), Cutout}; 7 = {RRC(0.08, 0.5), Cutout(0.5, 1.0)}).

SVD | Encoder | T; T3 Ta e Te 7. RRC(0.08,0.5)
w.0. SVD |Resnet-18| 6290 5053  60.00  56.67 5497  54.09 57.11
g=30 |Resnet-18| 64.86 51.00 6157 5785  55.69  54.75 58.10
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Further Understanding of Labeling Error

Definition 3 (Augmentation Graph )

Given an original dataset D and an augmentation collection 7, there exist n augmented samples that form the
augmentation dataset D,,, = {z|z = t(Z),Z € D,t € T}. An augmentation graph (G is obtained by taking the
n augmented samples as the graph vertices and assuming there exists an edge between two vertices ¢, 2’ €
Daug (if they can be generated from a random original sample & € D .)

p
According to spectral graph theory, we define A € R"*"™ as the adjacency matrix of the augmentation graph § .

For two augmented samples x, x' e Daug , the element A(x, x’ ) denotes the marginal probability of

generating -, ' from a random original sample Z € D. Formally, Eél(a;, ') =E,cp [p(x\:ﬁ)p(x’\:ﬁ)]]

The corresponding normalized graph Laplacian matrixis [, = | — D—%AD—% , Where [) represents a diagonal

n

degree matrix with the diagonal element D, , = Z A(z,z"). The eigenvalues of [, are denoted as {\;};- 1,

,Dau
where 0 = \; < ... < )\, < 2. 7€Faug

[4] J. HaoChen, C. Wei, A. Gaidon, and T. Ma. Provable guarantees for self-supervised deep learning with spectral contrastive loss. NeurlPS, 2021.
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Further Understanding of Labeling Error

Definition 3 (Augmentation Graph)

Given an original dataset D and an augmentation collection 7, there exist n augmented samples that form the
augmentation dataset D,,, = {z|z = t(Z),Z € D,t € T}. An augmentation graph (G is obtained by taking the
n augmented samples as the graph vertices and assuming there exists an edge between two vertices ¢, 2’ €

Daug (if they can be generated from a random original sample z ¢ D .)

Let the assumption of labeling error hold. For the empirical optimal encoder f * | after taking the truncated SVD

with hyper-parameter ¢ on the original dataset D, there exists a linear head W with norm |[W*||p < 1/(1 — Ne.q)

such that 4
= A
Ak+1,q]

where £ denotes the dimension of embedding space and Ay , denotes the k 4 1-th eigenvalues of L.
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Further Understanding of Labeling Error

® Augmentation Suggestion

« Wang et al,.l'0l suggested: Weak augmentation + Data inflation

 We suggest: Weak augmentation + Data inflation + SVD

Table 5. Downstream classification top-1 accuracies (%) of SImCLR (Lsp.) on CIFAR-10 using the truncated SVD with different g or the
data inflation strategy under the weak data augmentation adopted by Wang et al. (2024) (7s = {RRC(0.2, 1.0), Color jitter(0.5, 0.4),

Random horizontal flip, Random grayscale, Gaussian blur}).
T | Encoder | Inflation w/oSVD ¢=30 ¢=25 ¢=20 q¢q=15 q¢=10

Ts | Resnet-18 | 71.54 71,21 71.64 71.65 71,11 70.41 67.83

7T | Encoder | Inflation Inflation+ (¢ = 30) Inflation + (¢ = 25) Inflation + (¢ = 20)
Ts | Resnet-18 | 71.54 71.64 72.55 71.19

[10] Y. Wang, J. Zhang, and Y. Wang. Do generated data always help contrastive learning? In International Conference on Learning Representations (ICLR), 2024.
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Further Understanding of Labeling Error

® Augmentation Suggestion

« Wang et al,.l'0l suggested: Weak augmentation + Data inflation

 We suggest: Weak augmentation + Data inflation + SVD + moderate embedding dimension

Table 7. Downstream classification top-1 accuracies (%) of SImCLR (Lspe) using the truncated SVD (¢ = 30 for CIFAR-10 and
CIFAR-100, ¢ = 90 for STL-10) with different embedding dimension k.

Embedding Dimension
T | Encoder Dataset
k=128 k=256 k=512 k=1024 £k =2048
71 | Resnet-18 | CIFAR-10 67.71 68.51 68.54 69.09 68.65

71 | Resnet-50 | CIFAR-10 67.43 65.99 66.50 66.83 66.22
71 | Resnet-18 | CIFAR-100 | 35.00 36.68 36.78 37.78 37.18
71 | Resnet-50 | CIFAR-100 | 35.46 35.42 35.39 35.59 35.53
T: | Resnet-18 STL-10 1235 72.42 73.12 73.88 73.47
71 | Resnet-50 STL-10 74.68 74.94 75.01 76.26 75.57

[10] Y. Wang, J. Zhang, and Y. Wang. Do generated data always help contrastive learning? In International Conference on Learning Representations (ICLR), 2024.

2025-6-7 Jun Chen 21




o ICML

International Conference
On Machine Learning

Thanks

Jun Chen

Huazhong Agricultural University, Wuhan, China
cj850487243@163.com
Jun. 2025

2025-6-7 Jun Chen 22




