

Algorithmic Recourse for Long-Term Improvement

Kentaro Kanamori¹, Ken Kobayashi², Satoshi Hara³, Takuya Takagi¹

¹Fujitsu Limited, ²Institute of Science Tokyo, ³The University of Electro-Communications

Background

Algorithmic recourse aims to provide an "action" for altering unfavorable predictions

Algorithmic Recourse [Ustun+ 19]

Explaining a "recourse action" for obtaining a favorable prediction result from an ML model

Background

Algorithmic recourse aims to provide an "action" for altering unfavorable predictions

Algorithmic Recourse [Ustun+ 19]

Explaining a "recourse action" for obtaining a favorable prediction result from an ML model

Your loan application is rejected...

Let's increase your income by \$3K!

Problem 1. (Algorithmic Recourse; AR)

Given a model $h \colon \mathcal{X} \to \mathcal{Y}$, an input instance $x \in \mathcal{X}$, and a favorable class $y^* \in \mathcal{Y}$, find an action a^* such that

$$a^* = \operatorname{arg\,min}_{a \in \mathcal{A}} c(a \mid x) \text{ s.t. } h(x+a) = y^*$$

where \mathscr{A} is a set of feasible actions and c is a cost function.

► Provide a minimum-cost action *a* that alters the prediction by the ML model *h*

Motivation

Provide improvement-oriented actions for making the real-world outcome better

"Improvement" [König+ 23]

To maintain the quality and reliability of high-stakes decision-making tasks, we need to provide actions that <u>improve the user's real-world outcome</u> as well as prediction

Motivation

Provide improvement-oriented actions for making the real-world outcome better

"Improvement" [König+ 23]

To maintain the quality and reliability of high-stakes decision-making tasks, we need to provide actions that <u>improve the user's real-world outcome</u> as well as prediction

ightharpoonup Achieving improvement is fundamentally difficult because we do not know the oracle h^*

Problem Formulation

Suggest actions for given instances and observe delayed feedback on outcomes

Assumption We can observe the outcome if an instance x executes a suggested action a

Delayed Feedback

Problem Formulation

Suggest actions for given instances and observe delayed feedback on outcomes

Assumption We can observe the outcome if an instance x executes a suggested action a

Problem 2. (AR for Long-Term Improvement; ARLIM)

For each round t = 1, 2, ..., T,

- 1. Receive an instance x_t and candidate valid actions \mathcal{A}_t
- 2. Suggest an action $a_t \in \mathcal{A}_t$ based on the past observations
- 3. Sample a reward $R_t \sim \mathcal{B}(p_t)$ and delay $D_t \sim \mathcal{D}$, where p_t is the probability that x_t executes a_t and $h^*(x_t + a_t) = y^*$
- 4. Observe feedback on the past rewards $\{R_s \mid s + D_s = t\}_{s=1}^{t-1}$

Goal Maximize the mean expected reward $R_T = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[R_t]$

ightharpoonup We aim to provide improvement-oriented actions a_t for as many instances x_t as possible

Algorithms

Apply contextual linear bandit and contextual Bayesian optimization algorithms

Contextual Linear Bandit (CLB)

Assumption We can model the probability p_t as:

$$p_t = \exp(-c(a_t \mid x_t)) \cdot \mathbb{P}(h^*(x_t + a_t) = y^*)$$
prob. of execution (known)
prob. of improvement (unknown)

Our problem can be reduced to the CLB problem under stochastic delayed feedback [Vernade+ 20]

Proposition 4.2

There exists an algorithm (*LinUCB*) that satisfies:

$$R_T \ge \frac{1}{T} \sum_{t=1}^{T} R_t^* - \mathcal{O}\left(\log T / \sqrt{T}\right)$$
optimal rewards
converges to 0

Algorithms

Apply contextual linear bandit and contextual Bayesian optimization algorithms

Contextual Linear Bandit (CLB)

Assumption We can model the probability p_t as:

$$p_t = \exp(-c(a_t \mid x_t)) \cdot \mathbb{P}(h^*(x_t + a_t) = y^*)$$
prob. of execution
(known)
prob. of improvement
(unknown)

Our problem can be reduced to the CLB problem under stochastic delayed feedback [Vernade+ 20]

Proposition 4.2

There exists an algorithm (*LinUCB*) that satisfies:

$$R_T \ge \frac{1}{T} \sum_{t=1}^{T} R_t^* - \mathcal{O}\left(\log T / \sqrt{T}\right)$$
optimal rewards converges to 0

Contextual Bayesian Optimization (CBO)

Idea Train a model $f: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ such that

$$f(x_t, a_t) \approx R_t$$

using the past observations $Z_t = \{(x_s, a_s, R_s)\}_{s=1}^{t-1}$

- Our problem can be regarded as the CBO problem under stochastic delayed feedback [Verma+ 22]
- \bigcirc No need for the cost function c to be known
- © Scalability issue with the GP-based algorithms
- ► By employing *BwO forest* [Kim+ 22] instead of GP, we propose a scalable algorithm (*BwOUCB*)

Experiments

Achieve higher improvement than baselines without significantly degrading cost

Case 1. "Noiseless" Cost Scenario

Our LinUCB attained higher improvements while maintaining comparable costs

Experiments

Achieve higher improvement than baselines without significantly degrading cost

Case 1. "Noiseless" Cost Scenario

Our LinUCB attained higher improvements while maintaining comparable costs

Case 2. "Noisy" Cost Scenario

► The performance of our BwOUCB was better than or close to others in many cases

Summary

Provide improvement-oriented recourse actions from the long-term perspective

- Introduce a new online learning task: algorithmic recourse for long-term improvement
- Propose two algorithms based on the contextual linear bandit and Bayesian optimization
- Demonstrate that our methods could provide actions for improving the real-world outcome

