

xt ose: Robust & Coherent ose Estimation by <u>ext</u>ending ViTs

Glory Rongyu CHEN*, Li'an ZHUO*, Linlin YANG, Qi WANG, Liefeng BO, Bang ZHANG™, & Angela YAO

Introduction

Task: 3D Human/Hand Pose Estimation (HPE)

•Output: 3D pose parameters of the Human & Hand Model. Projected to 2D for visualization

•Architecture: Vision Transformers (ViTs) working on image patches of size 16 x 16

Shortcomings

X Robustness: misalignment between 3D poses& images, e.g. wrong orient. for complex motion in Col. 2 & occlusions

X Coherence: the ViT itself does not consider the temporal info for videos, requiring an additional temporal module on top of frame features to alleviate jitter

Insights

• Image alignment: 2D HPE based on **template matching** is better than **regression**-based 3D HPE

•Attention freely collects info on any relationship, e.g. those 1. between hands & bodies (spatial), 2. between image & 2D pose modalities, & 3. across frames (temporal)

Takeaways

Unified HPE Framework with Modular Attention

- •We extend the pose ViT into the first Video ViT pose estimator by re-programming the attention, which enhances robust & coherent features & can incorporate the info from multiple modalities, frames, & views, etc.
- •Logo: complex Pose, attention (the cube) Extension
- •Quotes: You can enjoy a grander sight, By climbing to a greater height (Tang Peoms). I.e. leverage all available info incl. that from other parts, modalities, & frames

Extending Pose Vision Transformers

2D ViT Pose Form
Pose images (Col. 1)

instead of 1D arrays are chosen for the same spatial layout as images & depicting joints & human configs

+ Multi-Modal Pose ViTs

2D pose images & RGB images can be well processed & seamlessly fused by **one shared** vanilla ViTs with the **Multi-Modal Attention**, exploiting the layout but not being misled by 2D pose errors like Concat & ControlNet

Video Pose ViTs

Attending & fusing features from multiple frames at **each layer** is more effective than just fine-tuning a **temporal head** on frame features

Extensive Experiments

SOTA on 5 human & hand datasets: 23% accuracy (PA-MPJPE) improvement on the 3DPW, √robust & coherent in challenging motion blur, occlusion, & perspective

•Ablations of 2D pose forms, modality fusions, & strategies

SKEL. IMAGE	6.2		6.3		0.742	0.985
✓ SKEL. IMAGE	6.0 4.9		5.7 5.1		0.783 0.823	0.991 0.993
Метнор	NEW DAYS @0.05 @0.1		s @0.15 @0.05		VISOR @0.1	@0.15
HAMER	48.0	78.0	88.8	43.0	76.9	89.3
Fusion						
Late fusion	50.5	82.4	92.5	52.5	87.1	95.6
Channel concat*	56.3	83.6	92.2	55.9	87.3	95.3
ControlNet*	55.6	83.5	92.3	57.7	87.5	95.5
TRAINING						
From ViTPose	49.9	82.2	92.2	46.4	85.3	95.2
Only Q, K	50.0	81.9	92.3	49.1	85.3	95.1
1 st HALF	50.8	82.2	92.3	50.2	85.8	95.2
EXTPOSE	59.6	84.8	92.7	61.1	88.5	95.6

Thus, robust to 2D pose errors; yet, both branches fail in extreme cases where we may seek more cues

ViTPose Ground truth Ours

