Graph Minimum Factor Distance and Its Application to Large-Scale Graph Data Clustering ### Jicong Fan School of Data Science The Chinese University of Hong Kong, Shenzhen, China July 2025 # **Graph Comparison** - Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two undirected graphs in some space \mathbb{G} . We aim to provide a function dist : $\mathbb{G} \times \mathbb{G} \to \mathbb{R}$ to quantify the distance between G_1 and G_2 . - Graph comparison plays a crucial role in many graph analysis tasks such as graph search, classification, clustering, and generation. # **Graph Comparison** - Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two undirected graphs in some space \mathbb{G} . We aim to provide a function dist : $\mathbb{G} \times \mathbb{G} \to \mathbb{R}$ to quantify the distance between G_1 and G_2 . - Graph comparison plays a crucial role in many graph analysis tasks such as graph search, classification, clustering, and generation. - Popular methods for graph comparison include graph kernels, graph edit distance, Gromov-Wasserstein distance, etc. Most of them have high computational costs. ### Motivation • Assume that the adjacency matrices \mathbf{A}_1 and \mathbf{A}_2 of G_1 and G_2 are generated by some kernel function k on two sets of data points denoted as matrices $\mathbf{Z}_1 \in \mathbb{R}^{m \times n_1}$ and $\mathbf{Z}_2 \in \mathbb{R}^{m \times n_2}$ respectively, i.e., $$[\mathbf{A}_i]_{uv} = k(\mathbf{z}_u^{(i)}, \mathbf{z}_v^{(i)}), \quad i = 1, 2,$$ where $\mathbf{z}_{u}^{(i)}$ denotes the *u*-th column of \mathbf{Z}_{i} . ### Motivation • Assume that the adjacency matrices \mathbf{A}_1 and \mathbf{A}_2 of G_1 and G_2 are generated by some kernel function k on two sets of data points denoted as matrices $\mathbf{Z}_1 \in \mathbb{R}^{m \times n_1}$ and $\mathbf{Z}_2 \in \mathbb{R}^{m \times n_2}$ respectively, i.e., $$[\mathbf{A}_i]_{uv} = k(\mathbf{z}_u^{(i)}, \mathbf{z}_v^{(i)}), \quad i = 1, 2,$$ where $\mathbf{z}_{u}^{(i)}$ denotes the *u*-th column of \mathbf{Z}_{i} . • To quantify the distance between G_1 and G_2 , we propose to calculate the distance between \mathbf{Z}_1 and \mathbf{Z}_2 and let $$\mathsf{dist}(G_1,G_2):=f(\mathbf{Z}_1,\mathbf{Z}_2)$$ where $f: \mathbb{R}^{m \times n_1} \times \mathbb{R}^{m \times n_2} \to \mathbb{R}$ denotes a function to calculate the distance between two discrete distributions. - \mathbf{Z}_1 and \mathbf{Z}_2 are unknown. But we know $\phi(\mathbf{z}_u^{(i)})^\top \phi(\mathbf{z}_v^{(i)})$, if \mathbf{A}_i is PSD. - Most graphs do not have PSD adjacency matrices. We then construct PSD proxy as $$\mathcal{A}_{i}^{\phi} = \sum_{j=1}^{n_{i}} |\lambda_{j}^{(i)}| \mathbf{v}_{j}^{(i)} \mathbf{v}_{j}^{(i)^{\top}}, \quad i = 1, 2$$ where $\lambda_j^{(i)}$ and $\mathbf{v}_j^{(i)}$ are the *j*-th eigenvalue and eigenvector of \mathbf{A}_i , i=1,2. Then we have $\mathbf{\mathcal{A}}_i^\phi = \mathbf{\Phi}_i^\top \mathbf{\Phi}_i$. - \mathbf{Z}_1 and \mathbf{Z}_2 are unknown. But we know $\phi(\mathbf{z}_u^{(i)})^\top \phi(\mathbf{z}_v^{(i)})$, if \mathbf{A}_i is PSD. - Most graphs do not have PSD adjacency matrices. We then construct PSD proxy as $$\mathcal{A}_i^{\phi} = \sum_{j=1}^{n_i} |\lambda_j^{(i)}| \mathbf{v}_j^{(i)} \mathbf{v}_j^{(i)}^{\top}, \quad i = 1, 2$$ where $\lambda_j^{(i)}$ and $\mathbf{v}_j^{(i)}$ are the *j*-th eigenvalue and eigenvector of \mathbf{A}_i , i=1,2. Then we have $\mathbf{A}_i^{\phi} = \mathbf{\Phi}_i^{\top} \mathbf{\Phi}_i$. • However, the difficulty is that Φ_1 and Φ_2 are usually not in the same space since they cannot be uniquely determined by \mathcal{A}_1^ϕ and \mathcal{A}_2^ϕ (or \mathbf{A}_1 and \mathbf{A}_2) respectively. We introduce a rotation matrix R₁₂ and let $$\mathit{f}(\mathbf{Z}_{1},\mathbf{Z}_{2}) = \min_{\mathbf{R}_{12} \in \mathcal{R}} \|\boldsymbol{\mu}_{1} - \mathbf{R}_{12}\boldsymbol{\mu}_{2}\|$$ where μ_1 and μ_2 are the mean vectors of Φ_1 and Φ_2 respectively. We introduce a rotation matrix R₁₂ and let $$f(\mathbf{Z}_1, \mathbf{Z}_2) = \min_{\mathbf{R}_{12} \in \mathcal{R}} \| \mu_1 - \mathbf{R}_{12} \mu_2 \|$$ where μ_1 and μ_2 are the mean vectors of Φ_1 and Φ_2 respectively. • This leads to the following distance: $$MMFD(G_1, G_2) = \min_{\mathbf{R}_{12} \in \mathcal{R}} \left\| \frac{1}{n_1} \sum_{j=1}^{n_1} \phi(\mathbf{z}_j^{(1)}) - \frac{1}{n_2} \sum_{j=1}^{n_2} \mathbf{R}_{12} \phi(\mathbf{z}_j^{(2)}) \right\| \\ = \left| \frac{1}{n_1} \sqrt{\sum_{uv} [\mathcal{A}_1^{\phi}]_{uv}} - \frac{1}{n_2} \sqrt{\sum_{uv} [\mathcal{A}_2^{\phi}]_{uv}} \right|$$ * MMFD has a closed-form solution. ### More Methods and Results #### Extensions - MMFD_{I B}: low-rank MMFD - MMFD-KM for large-scale clustering - MFD: beyond mean comparison - MFD-KD for large-scale clustering ### More Methods and Results #### Extensions - MMFD_{IR}: low-rank MMFD - MMFD-KM for large-scale clustering - MFD: beyond mean comparison - MFD-KD for large-scale clustering ### Theory - Pseudo-metrics - Robustness - Low-rank approximation bound - Algorithmic convergence # Toy Examples of Graph Comparison G_1, G_2, \ldots, G_7 from left to right: | | | | | | | 53 | | |----|--------|--------|--------|--------|--------|--------|--------| | | - | 0.0914 | 0.1589 | 0.2097 | 0.2528 | 0.2505 | 0.2505 | | | 0.0914 | ı | 0.0675 | 0.1182 | 0.1614 | 0.1590 | 0.1591 | | | 0.1589 | 0.0675 | _ | 0.0507 | 0.0939 | 0.0915 | 0.0916 | | | 0.2097 | 0.1182 | 0.0507 | _ | 0.0432 | 0.0408 | 0.0409 | | | 0.2528 | 0.1614 | 0.0939 | 0.0432 | _ | 0.0024 | 0.0023 | | ** | 0.2505 | 0.1590 | 0.0915 | 0.0408 | 0.0024 | _ | 0.0001 | | | 0.2505 | 0.1591 | 0.0916 | 0.0409 | 0.0023 | 0.0001 | _ | For instance, G_2 is more similar to G_3 than to G_1 ; G_7 lies between G_5 and G_6 ; the difference between G_6 and G_7 is less than the difference between G_5 and G_6 . # **Experiments of Graph Clustering** | Method | AIDS ($N = 2000$) | | | PROTEINS ($N = 1113$) | | | |-----------------------|---------------------|---------------------|---------------------|-------------------------|--------------------|------------------| | | ACC | NMI | ARI | ACC | NMI | ARI | | SP kernel | 79.49±0.84 | 0.39 ± 0.62 | -0.71±1.13 | 64.42±0.00 | 6.03 ± 0.00 | 5.87±0.00 | | GK kernel | 79.95±0.00 | 0.04 ± 0.00 | -0.07 ± 0.00 | 59.61±0.22 | 0.24 ± 0.18 | 0.10 ± 0.19 | | RW kernel | 79.90±0.00 | 0.09 ± 0.00 | -0.15 ± 0.00 | _ | - | - | | WL kernel | 78.50 ± 0.00 | 1.17 ± 0.00 | -2.09 ± 0.00 | 60.38 ± 0.00 | 1.55 ± 0.00 | 0.81 ± 0.00 | | LT kernel | 79.95±0.00 | 0.04 ± 0.00 | -0.07 ± 0.00 | _ | - | - | | WL-OA kernel | 80.40±0.00 | $2.46{\pm}0.00$ | $2.38{\pm}0.00$ | 60.38 ± 0.00 | $1.55{\pm}0.00$ | 0.81 ± 0.00 | | InfoGraph+KM | 92.21±0.81 | 54.49±3.53 | 63.78 ± 3.84 | 59.22±0.21 | 3.22±1.94 | 0.00 ± 0.00 | | InfoGraph+SC | 95.65±1.55 | 72.21 ± 9.20 | 80.17±7.19 | 64.02 ± 2.31 | 5.17 ± 1.87 | 7.06 ± 2.65 | | GraphCL+KM | 90.40±1.06 | 46.56 ± 4.31 | 55.29 ± 5.28 | 59.47±0.01 | 0.37 ± 0.31 | 0.00 ± 0.00 | | GraphCL+SC | 96.08±1.96 | $72.97\!\pm\!10.86$ | 81.65 ± 8.51 | 59.96±0.10 | 2.81 ± 0.07 | 3.88 ± 0.08 | | JOAO+KM | 88.25±0.00 | 38.02 ± 0.00 | 44.62 ± 0.00 | 59.48±0.00 | 0.64 ± 0.05 | -0.06 ± 0.00 | | JOAO+SC | 80.13±0.02 | $0.84{\pm}0.15$ | $0.80 {\pm} 0.14$ | 59.75±0.00 | 0.47 ± 0.00 | 0.17 ± 0.00 | | GWF+KM | 96.43±1.71 | 74.48 ± 9.15 | 84.71 ± 7.02 | 66.87 ± 2.36 | 9.07 ± 1.21 | 11.43 ± 3.19 | | GWF+SC | 96.44±2.92 | $76.01\!\pm\!15.23$ | $83.54\!\pm\!13.61$ | 68.79 ± 2.05 | $10.17\!\pm\!1.74$ | 13.88 ± 2.72 | | GLCC | 79.02±0.62 | 4.18±2.01 | 5.05±2.13 | 60.65±2.69 | 2.08±1.43 | 4.16±2.28 | | DCGLC | 96.77±0.33 | 73.51 ± 2.30 | 85.74 ± 1.45 | $68.89{\pm}2.04$ | $10.90\!\pm\!1.35$ | 14.32 ± 2.88 | | MMD | 50.10±0.00 | 0.00 ± 0.00 | 0.03±0.00 | 52.56±0.00 | 0.08 ± 0.00 | 0.14±0.00 | | GWD | 88.30±0.00 | 49.73 ± 0.00 | 56.45 ± 0.00 | 68.82 ± 0.00 | 12.42 ± 0.00 | 12.37 ± 0.00 | | GED | 89.55±0.00 | 43.33 ± 0.00 | 51.02 ± 0.00 | 52.24±0.07 | 3.92 ± 0.23 | -0.23 ± 0.03 | | MMFD | 98.80±0.00 | 88.37±0.00 | 94.49±0.00 | 72.60±0.00 | 14.18±0.00 | 19.67±0.00 | | $MMFD_{LR}$ | 98.80±0.00 | 88.37 ± 0.00 | 94.49 ± 0.00 | 72.49 ± 0.13 | 13.98 ± 0.25 | 19.49 ± 0.23 | | $MMFD_{LR}\text{-}KM$ | 98.96 ± 0.02 | 89.62 ± 0.18 | 95.25 ± 0.11 | 71.87 ± 0.18 | 12.74 ± 0.34 | 18.51 ± 0.28 | | MFD | 99.45±0.00 | 93.82 ± 0.00 | 97.47 ± 0.00 | 72.60 ± 0.00 | 14.18 ± 0.00 | 19.67 ± 0.00 | | MFD-KD | 99.02 ± 0.00 | 90.01 ± 0.34 | 95.51 ± 0.18 | 72.39 ± 0.30 | 14.06 ± 0.40 | 19.24 ± 0.57 | ### Time Cost Comparison | | G_1, G_2 | G_1, G_2, \ldots, G_N | |--|------------------------------------|---| | Shortest path kernel (Borgwardt & Kriegel, 2005) | $O(n^4)$ | $\mathcal{O}(N^2n^4)$ | | Random walk kernel (Vishwanathan et al., 2010) | $\mathcal{O}(n^3)$ | $\mathcal{O}(N^2n^3)$ | | Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011) | $\mathcal{O}(hl)$ | $\mathcal{O}(Nhl + N^2hn)$ | | Graph Edit Distance (Serratosa, 2014) | $\mathcal{O}(n^3)$ | $O(N^2n^3)$ | | (Entropic) Gromov–Wasserstein (Peyré et al., 2016) | $\mathcal{O}(n^3)$ | $\mathcal{O}(N^2n^3)$ | | Sampled Gromov-Wasserstein (Kerdoncuff et al., 2021) | $\mathcal{O}(n^2)$ | $O(N^2n^2)$ | | $MMFD_{LR}$ | $\mathcal{O}(n^2 \log(d) + d^2 n)$ | $\mathcal{O}(N(n^2\log(d) + d^2n) + N^2)$ | | $MMFD_{LR}$ - KM | $O(n^2 \log(d) + d^2 n)$ | $O(N(n^2\log(d) + d^2n) + NKT)$ | Table 1: Time complexity comparison between MMFD (with $d \ll n$) and a few representative graph distances or similarities on two graphs or a set of N graphs, each with n nodes. See Appendix C.4 for the running time comparison. ### Time Cost Comparison | | G_1, G_2 | G_1, G_2, \ldots, G_N | |--|------------------------------------|---| | Shortest path kernel (Borgwardt & Kriegel, 2005) | $O(n^4)$ | $O(N^2n^4)$ | | Random walk kernel (Vishwanathan et al., 2010) | $\mathcal{O}(n^3)$ | $\mathcal{O}(N^2n^3)$ | | Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011) | O(hl) | $O(Nhl + N^2hn)$ | | Graph Edit Distance (Serratosa, 2014) | $\mathcal{O}(n^3)$ | $O(N^2n^3)$ | | (Entropic) Gromov–Wasserstein (Peyré et al., 2016) | $\mathcal{O}(n^3)$ | $O(N^2n^3)$ | | Sampled Gromov-Wasserstein (Kerdoncuff et al., 2021) | $O(n^2)$ | $O(N^2n^2)$ | | $MMFD_{LR}$ | $\mathcal{O}(n^2 \log(d) + d^2 n)$ | $\mathcal{O}(N(n^2\log(d) + d^2n) + N^2)$ | | MMFD _{LR} -KM | $\mathcal{O}(n^2 \log(d) + d^2 n)$ | $\mathcal{O}(N(n^2\log(d) + d^2n) + NKT)$ | Table 1: Time complexity comparison between MMFD (with $d \ll n$) and a few representative graph distances or similarities on two graphs or a set of N graphs, each with n nodes. See Appendix C.4 for the running time comparison. | | AIDS (N=2000) | PROTEINS (N=1113) | ENZYMES (N=600) | |-------------------------------|---------------|-------------------|-----------------| | Shortest-path kernel | 1.51 | 7.55 | 1.34 | | WL subtree kernel | 0.81 | 0.90 | 0.38 | | Gromov-Wasserstein | 25544.26 | 4549.31 | 1600.87 | | $\mathrm{MMFD}_{\mathrm{LR}}$ | 0.26 | 0.61 | 0.14 | ### The End # Thanks for your attention! Paper: https://openreview.net/pdf?id=hyPWP38j5k $\textbf{Code:} \ \texttt{https://github.com/jicongfan/Graph-Minimum-Factor-Distance}$