Graph Minimum Factor Distance and Its Application to Large-Scale Graph Data Clustering

Jicong Fan

School of Data Science
The Chinese University of Hong Kong, Shenzhen, China

July 2025

Graph Comparison

- Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two undirected graphs in some space \mathbb{G} . We aim to provide a function dist : $\mathbb{G} \times \mathbb{G} \to \mathbb{R}$ to quantify the distance between G_1 and G_2 .
- Graph comparison plays a crucial role in many graph analysis tasks such as graph search, classification, clustering, and generation.

Graph Comparison

- Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two undirected graphs in some space \mathbb{G} . We aim to provide a function dist : $\mathbb{G} \times \mathbb{G} \to \mathbb{R}$ to quantify the distance between G_1 and G_2 .
- Graph comparison plays a crucial role in many graph analysis tasks such as graph search, classification, clustering, and generation.
- Popular methods for graph comparison include graph kernels, graph edit distance, Gromov-Wasserstein distance, etc. Most of them have high computational costs.

Motivation

• Assume that the adjacency matrices \mathbf{A}_1 and \mathbf{A}_2 of G_1 and G_2 are generated by some kernel function k on two sets of data points denoted as matrices $\mathbf{Z}_1 \in \mathbb{R}^{m \times n_1}$ and $\mathbf{Z}_2 \in \mathbb{R}^{m \times n_2}$ respectively, i.e.,

$$[\mathbf{A}_i]_{uv} = k(\mathbf{z}_u^{(i)}, \mathbf{z}_v^{(i)}), \quad i = 1, 2,$$

where $\mathbf{z}_{u}^{(i)}$ denotes the *u*-th column of \mathbf{Z}_{i} .

Motivation

• Assume that the adjacency matrices \mathbf{A}_1 and \mathbf{A}_2 of G_1 and G_2 are generated by some kernel function k on two sets of data points denoted as matrices $\mathbf{Z}_1 \in \mathbb{R}^{m \times n_1}$ and $\mathbf{Z}_2 \in \mathbb{R}^{m \times n_2}$ respectively, i.e.,

$$[\mathbf{A}_i]_{uv} = k(\mathbf{z}_u^{(i)}, \mathbf{z}_v^{(i)}), \quad i = 1, 2,$$

where $\mathbf{z}_{u}^{(i)}$ denotes the *u*-th column of \mathbf{Z}_{i} .

• To quantify the distance between G_1 and G_2 , we propose to calculate the distance between \mathbf{Z}_1 and \mathbf{Z}_2 and let

$$\mathsf{dist}(G_1,G_2):=f(\mathbf{Z}_1,\mathbf{Z}_2)$$

where $f: \mathbb{R}^{m \times n_1} \times \mathbb{R}^{m \times n_2} \to \mathbb{R}$ denotes a function to calculate the distance between two discrete distributions.

- \mathbf{Z}_1 and \mathbf{Z}_2 are unknown. But we know $\phi(\mathbf{z}_u^{(i)})^\top \phi(\mathbf{z}_v^{(i)})$, if \mathbf{A}_i is PSD.
- Most graphs do not have PSD adjacency matrices. We then construct PSD proxy as

$$\mathcal{A}_{i}^{\phi} = \sum_{j=1}^{n_{i}} |\lambda_{j}^{(i)}| \mathbf{v}_{j}^{(i)} \mathbf{v}_{j}^{(i)^{\top}}, \quad i = 1, 2$$

where $\lambda_j^{(i)}$ and $\mathbf{v}_j^{(i)}$ are the *j*-th eigenvalue and eigenvector of \mathbf{A}_i , i=1,2. Then we have $\mathbf{\mathcal{A}}_i^\phi = \mathbf{\Phi}_i^\top \mathbf{\Phi}_i$.

- \mathbf{Z}_1 and \mathbf{Z}_2 are unknown. But we know $\phi(\mathbf{z}_u^{(i)})^\top \phi(\mathbf{z}_v^{(i)})$, if \mathbf{A}_i is PSD.
- Most graphs do not have PSD adjacency matrices. We then construct PSD proxy as

$$\mathcal{A}_i^{\phi} = \sum_{j=1}^{n_i} |\lambda_j^{(i)}| \mathbf{v}_j^{(i)} \mathbf{v}_j^{(i)}^{\top}, \quad i = 1, 2$$

where $\lambda_j^{(i)}$ and $\mathbf{v}_j^{(i)}$ are the *j*-th eigenvalue and eigenvector of \mathbf{A}_i , i=1,2. Then we have $\mathbf{A}_i^{\phi} = \mathbf{\Phi}_i^{\top} \mathbf{\Phi}_i$.

• However, the difficulty is that Φ_1 and Φ_2 are usually not in the same space since they cannot be uniquely determined by \mathcal{A}_1^ϕ and \mathcal{A}_2^ϕ (or \mathbf{A}_1 and \mathbf{A}_2) respectively.

We introduce a rotation matrix R₁₂ and let

$$\mathit{f}(\mathbf{Z}_{1},\mathbf{Z}_{2}) = \min_{\mathbf{R}_{12} \in \mathcal{R}} \|\boldsymbol{\mu}_{1} - \mathbf{R}_{12}\boldsymbol{\mu}_{2}\|$$

where μ_1 and μ_2 are the mean vectors of Φ_1 and Φ_2 respectively.

We introduce a rotation matrix R₁₂ and let

$$f(\mathbf{Z}_1, \mathbf{Z}_2) = \min_{\mathbf{R}_{12} \in \mathcal{R}} \| \mu_1 - \mathbf{R}_{12} \mu_2 \|$$

where μ_1 and μ_2 are the mean vectors of Φ_1 and Φ_2 respectively.

• This leads to the following distance:

$$MMFD(G_1, G_2) = \min_{\mathbf{R}_{12} \in \mathcal{R}} \left\| \frac{1}{n_1} \sum_{j=1}^{n_1} \phi(\mathbf{z}_j^{(1)}) - \frac{1}{n_2} \sum_{j=1}^{n_2} \mathbf{R}_{12} \phi(\mathbf{z}_j^{(2)}) \right\| \\
= \left| \frac{1}{n_1} \sqrt{\sum_{uv} [\mathcal{A}_1^{\phi}]_{uv}} - \frac{1}{n_2} \sqrt{\sum_{uv} [\mathcal{A}_2^{\phi}]_{uv}} \right|$$

* MMFD has a closed-form solution.

More Methods and Results

Extensions

- MMFD_{I B}: low-rank MMFD
- MMFD-KM for large-scale clustering
- MFD: beyond mean comparison
- MFD-KD for large-scale clustering

More Methods and Results

Extensions

- MMFD_{IR}: low-rank MMFD
- MMFD-KM for large-scale clustering
- MFD: beyond mean comparison
- MFD-KD for large-scale clustering

Theory

- Pseudo-metrics
- Robustness
- Low-rank approximation bound
- Algorithmic convergence

Toy Examples of Graph Comparison

 G_1, G_2, \ldots, G_7 from left to right:

						53	
	-	0.0914	0.1589	0.2097	0.2528	0.2505	0.2505
	0.0914	ı	0.0675	0.1182	0.1614	0.1590	0.1591
	0.1589	0.0675	_	0.0507	0.0939	0.0915	0.0916
	0.2097	0.1182	0.0507	_	0.0432	0.0408	0.0409
	0.2528	0.1614	0.0939	0.0432	_	0.0024	0.0023
**	0.2505	0.1590	0.0915	0.0408	0.0024	_	0.0001
	0.2505	0.1591	0.0916	0.0409	0.0023	0.0001	_

For instance, G_2 is more similar to G_3 than to G_1 ; G_7 lies between G_5 and G_6 ; the difference between G_6 and G_7 is less than the difference between G_5 and G_6 .

Experiments of Graph Clustering

Method	AIDS ($N = 2000$)			PROTEINS ($N = 1113$)		
	ACC	NMI	ARI	ACC	NMI	ARI
SP kernel	79.49±0.84	0.39 ± 0.62	-0.71±1.13	64.42±0.00	6.03 ± 0.00	5.87±0.00
GK kernel	79.95±0.00	0.04 ± 0.00	-0.07 ± 0.00	59.61±0.22	0.24 ± 0.18	0.10 ± 0.19
RW kernel	79.90±0.00	0.09 ± 0.00	-0.15 ± 0.00	_	-	-
WL kernel	78.50 ± 0.00	1.17 ± 0.00	-2.09 ± 0.00	60.38 ± 0.00	1.55 ± 0.00	0.81 ± 0.00
LT kernel	79.95±0.00	0.04 ± 0.00	-0.07 ± 0.00	_	-	-
WL-OA kernel	80.40±0.00	$2.46{\pm}0.00$	$2.38{\pm}0.00$	60.38 ± 0.00	$1.55{\pm}0.00$	0.81 ± 0.00
InfoGraph+KM	92.21±0.81	54.49±3.53	63.78 ± 3.84	59.22±0.21	3.22±1.94	0.00 ± 0.00
InfoGraph+SC	95.65±1.55	72.21 ± 9.20	80.17±7.19	64.02 ± 2.31	5.17 ± 1.87	7.06 ± 2.65
GraphCL+KM	90.40±1.06	46.56 ± 4.31	55.29 ± 5.28	59.47±0.01	0.37 ± 0.31	0.00 ± 0.00
GraphCL+SC	96.08±1.96	$72.97\!\pm\!10.86$	81.65 ± 8.51	59.96±0.10	2.81 ± 0.07	3.88 ± 0.08
JOAO+KM	88.25±0.00	38.02 ± 0.00	44.62 ± 0.00	59.48±0.00	0.64 ± 0.05	-0.06 ± 0.00
JOAO+SC	80.13±0.02	$0.84{\pm}0.15$	$0.80 {\pm} 0.14$	59.75±0.00	0.47 ± 0.00	0.17 ± 0.00
GWF+KM	96.43±1.71	74.48 ± 9.15	84.71 ± 7.02	66.87 ± 2.36	9.07 ± 1.21	11.43 ± 3.19
GWF+SC	96.44±2.92	$76.01\!\pm\!15.23$	$83.54\!\pm\!13.61$	68.79 ± 2.05	$10.17\!\pm\!1.74$	13.88 ± 2.72
GLCC	79.02±0.62	4.18±2.01	5.05±2.13	60.65±2.69	2.08±1.43	4.16±2.28
DCGLC	96.77±0.33	73.51 ± 2.30	85.74 ± 1.45	$68.89{\pm}2.04$	$10.90\!\pm\!1.35$	14.32 ± 2.88
MMD	50.10±0.00	0.00 ± 0.00	0.03±0.00	52.56±0.00	0.08 ± 0.00	0.14±0.00
GWD	88.30±0.00	49.73 ± 0.00	56.45 ± 0.00	68.82 ± 0.00	12.42 ± 0.00	12.37 ± 0.00
GED	89.55±0.00	43.33 ± 0.00	51.02 ± 0.00	52.24±0.07	3.92 ± 0.23	-0.23 ± 0.03
MMFD	98.80±0.00	88.37±0.00	94.49±0.00	72.60±0.00	14.18±0.00	19.67±0.00
$MMFD_{LR}$	98.80±0.00	88.37 ± 0.00	94.49 ± 0.00	72.49 ± 0.13	13.98 ± 0.25	19.49 ± 0.23
$MMFD_{LR}\text{-}KM$	98.96 ± 0.02	89.62 ± 0.18	95.25 ± 0.11	71.87 ± 0.18	12.74 ± 0.34	18.51 ± 0.28
MFD	99.45±0.00	93.82 ± 0.00	97.47 ± 0.00	72.60 ± 0.00	14.18 ± 0.00	19.67 ± 0.00
MFD-KD	99.02 ± 0.00	90.01 ± 0.34	95.51 ± 0.18	72.39 ± 0.30	14.06 ± 0.40	19.24 ± 0.57

Time Cost Comparison

	G_1, G_2	G_1, G_2, \ldots, G_N
Shortest path kernel (Borgwardt & Kriegel, 2005)	$O(n^4)$	$\mathcal{O}(N^2n^4)$
Random walk kernel (Vishwanathan et al., 2010)	$\mathcal{O}(n^3)$	$\mathcal{O}(N^2n^3)$
Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011)	$\mathcal{O}(hl)$	$\mathcal{O}(Nhl + N^2hn)$
Graph Edit Distance (Serratosa, 2014)	$\mathcal{O}(n^3)$	$O(N^2n^3)$
(Entropic) Gromov–Wasserstein (Peyré et al., 2016)	$\mathcal{O}(n^3)$	$\mathcal{O}(N^2n^3)$
Sampled Gromov-Wasserstein (Kerdoncuff et al., 2021)	$\mathcal{O}(n^2)$	$O(N^2n^2)$
$MMFD_{LR}$	$\mathcal{O}(n^2 \log(d) + d^2 n)$	$\mathcal{O}(N(n^2\log(d) + d^2n) + N^2)$
$MMFD_{LR}$ - KM	$O(n^2 \log(d) + d^2 n)$	$O(N(n^2\log(d) + d^2n) + NKT)$

Table 1: Time complexity comparison between MMFD (with $d \ll n$) and a few representative graph distances or similarities on two graphs or a set of N graphs, each with n nodes. See Appendix C.4 for the running time comparison.

Time Cost Comparison

	G_1, G_2	G_1, G_2, \ldots, G_N
Shortest path kernel (Borgwardt & Kriegel, 2005)	$O(n^4)$	$O(N^2n^4)$
Random walk kernel (Vishwanathan et al., 2010)	$\mathcal{O}(n^3)$	$\mathcal{O}(N^2n^3)$
Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011)	O(hl)	$O(Nhl + N^2hn)$
Graph Edit Distance (Serratosa, 2014)	$\mathcal{O}(n^3)$	$O(N^2n^3)$
(Entropic) Gromov–Wasserstein (Peyré et al., 2016)	$\mathcal{O}(n^3)$	$O(N^2n^3)$
Sampled Gromov-Wasserstein (Kerdoncuff et al., 2021)	$O(n^2)$	$O(N^2n^2)$
$MMFD_{LR}$	$\mathcal{O}(n^2 \log(d) + d^2 n)$	$\mathcal{O}(N(n^2\log(d) + d^2n) + N^2)$
MMFD _{LR} -KM	$\mathcal{O}(n^2 \log(d) + d^2 n)$	$\mathcal{O}(N(n^2\log(d) + d^2n) + NKT)$

Table 1: Time complexity comparison between MMFD (with $d \ll n$) and a few representative graph distances or similarities on two graphs or a set of N graphs, each with n nodes. See Appendix C.4 for the running time comparison.

	AIDS (N=2000)	PROTEINS (N=1113)	ENZYMES (N=600)
Shortest-path kernel	1.51	7.55	1.34
WL subtree kernel	0.81	0.90	0.38
Gromov-Wasserstein	25544.26	4549.31	1600.87
$\mathrm{MMFD}_{\mathrm{LR}}$	0.26	0.61	0.14

The End

Thanks for your attention!

Paper: https://openreview.net/pdf?id=hyPWP38j5k

 $\textbf{Code:} \ \texttt{https://github.com/jicongfan/Graph-Minimum-Factor-Distance}$