

Human-Aligned Image Models Improve Visual Decoding from the Brain

Nona Rajabi¹, Antônio H. Ribeiro^{2,*}, Miguel Vasco^{1,*}, Farzaneh Taleb¹, Mårten Björkman¹, Danica Kragic¹

^{*} Equal contribution

¹KTH Royal Institute of Technology, Stockholm, Sweden

² Uppsala university, Uppsala, Sweden

Visual Decoding from the Brain

Retrieve or reconstruct the observed or imaginged visual image from the corresponding brain activity

Visual Decoding from the Brain

Retrieve or reconstruct the observed or imaginged visual image from the corresponding brain activity

State-of-the-Art

- Current SOTA methods have three main components:
 - A brain-signal encoder: $x \to f_{\theta}(x) = v$
 - A pretrained image encoder: $b \rightarrow g_{\theta} = w$
 - A self-supervised loss function (InfoNCE loss)

Proposed Method

We propose to use human-aligned image representation models for visual decoding from brain signals

Human-Aligned Image Models

• Finetune image encoder models to better align with human perception [1, 2].

Datasets

- We tested our hypothesis using three brain-image paired datasets:
 - Things EEG2 (Gifford et al., 2022)
 - Things MEG (Hebart et al., 2023)
 - Natural Scene fMRI Dataset (Allan et al., 2022)

Sample Results (EEG)

 Trained the model with the multimodal InfoNCE loss (CLIP loss) (Radford et al., 2021)

$$\mathcal{L}_C = -\frac{1}{N} \sum_{i=1}^{N} \left[\log \frac{\exp(\operatorname{sim}(\mathbf{w}_i, \mathbf{v}_i) / \tau)}{\sum_{j=1}^{N} \exp(\operatorname{sim}(\mathbf{w}_i, \mathbf{v}_j) / \tau)} + \log \frac{\exp(\operatorname{sim}(\mathbf{v}_i, \mathbf{w}_i) / \tau)}{\sum_{j=1}^{N} \exp(\operatorname{sim}(\mathbf{v}_i, \mathbf{w}_j) / \tau)} \right]$$

 Evaluated the model's performance using top-1 and top-5 image retrieval accuracy from a 200 unseen image set

Biological Interpretation

- a) Human-aligned models attend more to earlier timepoints.
- b) Human-aligned models attend more to higher frequencies.
- Both models attend to similar electrode locations on the brain

Summary

- Human-aligned models consistently and significantly improve visual retrieval from the brain.
- An extensive empirical study
- Interpreting the gradients of the model

Link to the full paper:

nonar@kth.se
www.linkedin.com/in/nonar