

On Mitigating Affinity Bias through Bandits with Evolving Biased Feedback

Matthew Faw¹, Constantine Caramanis², Jessica Hoffmann³

¹Georgia Tech, ²UT Austin, ³Google DeepMind

Problem Setup

 Affinity bias = Unconscious tendency to favor individuals similar to us

The University of Texas at Austin

Chandra Department of Electrical

and Computer Engineering
Cockrell School of Engineering

- Studies (e.g., [UC05, OA18, PS08, RBR19]) have shown affinity bias can:
- Arise from (often changing) media portrayals, cultural conditioning, and affinity biases
- Lead to undesirable opinion formation + self-reinforcing feedback loops

Our Goal: Investigate effects of evolving biases + feedback loops in sequential decision-making problems by introducing and studying a biased multi-armed bandit model capturing key features of affinity bias

Key Features to Model

- 1. The system has an initial, perhaps misleading, affinity for each action.
- 2. Selecting an action increases the system's affinity towards that action.
- 3. Selecting an action (slightly) decreases the system's affinity towards other actions

Affinity Bandit Model

- *K*-armed Gaussian bandit instance $(\nu_i = N(\mu_i, 1))_{i \in [K]}$, $\Delta_i = \max_i \mu_j \mu_i$
- Each arm $i \in [K]$ has an "initial bias" $T_i^{init} \ge 0$, $T^{init} = \sum_{i \in [K]} T_i^{init}$
- Rewards $R_{i,t} \sim \nu_i$ for each arm i are **unobserved**.
- Interaction model: For t=1,...,n Select arm $A_t \in [K]$

Observe (biased) feedback $F_t \sim \tilde{v}_i(t) = N(\tilde{\mu}_i(t), 1)$ Update $T_{A_t}(t) += 1$

• Biased feedback model: if $A_t = i$, F_t has mean:

• $f(\cdot) \in [0,1]$ is *unknown*, bounded, *L*-Lipschitz

Objective: minimize regret w.r.t. **true** (unobserved) rewards: $R(n) = \sum_{t \in [n]} \max_{i \in [K]} \mathbb{E}[R_{i,t} - R_{A_t,t}] = \sum_{i \in [K]} \Delta_i \mathbb{E}[T_i(n)]$

arm 2

 $\operatorname{arm} 3$

 $\operatorname{arm} K$

in $\boldsymbol{\nu}^{\mathrm{bias}} = (\mathrm{Real\ mean}) \times \mathrm{Fraction}$ $\square,\square \text{ Optimal arm in } \boldsymbol{\nu}, \, \boldsymbol{\nu}^{\mathrm{bias}}$

Pull arm 2

Linear Regret when Bias is Ignored

arm 1

Theorem: There is a 2-armed (biased) bandit instance with f(frac) = frac, constant suboptimality gap and initial biases such that, for all n sufficiently large, $R(n) = \Omega(n)$.

Proof Outline:

• We begin by considering the following event:

$$\mathcal{B}_t = \bigcap_{s \in [t]} \{ \tilde{\mu}_1(s) = \mu_1 W_1(s) \leq \tilde{\mu}_1^{st} < \tilde{\mu}_2^{st} \leq \mu_2 W_2(s) = \tilde{\mu}_2(s) \}$$
 Biased mean of optimal arm

- Choose initial biases such that \mathcal{B}_1 is **deterministically** true
- As long as \mathcal{B}_t is true, can couple samples between biased environment and "coupled" environment s.t.:

 $\tilde{T}_1^{st}(s) \ge T_1(s) \ \forall s \le t$

• \mathcal{B}_t is challenging to reason about directly, since it depends on the dynamics in both environments. However, one can show that, for ε sufficiently small, there are times $1 < t_1 < \cdots < t_R = t$ s.t.:

$$\widetilde{\mathcal{B}}_t = \bigcap_{r \in [R]} \{ \widetilde{T}_1(t_r) \le \varepsilon \ t_r \} \subseteq \mathcal{B}_t$$

- Can lower bound $\Pr[\widetilde{\mathcal{B}}_t] \geq .99$ using (anytime) high-probability guarantees for UCB
- Conclusion: since $\tilde{T}_1^{st}(n) \leq \varepsilon n$ with high probability, and $\tilde{\mathcal{B}}_t$ implies that $T_1(n) \leq \tilde{T}_1^{st}(n)$, UCB must suffer linear regret in the biased environment.

Elimination + Round-Robin achieves Sublinear Regret

Algorithm 1 Elimination algorithm for unknown bias model

Require: Time horizon
$$n \in \mathbb{N}$$
, sampling schedule $m_r \approx \log(n)/\widetilde{\Delta}_r^2$, where $\widetilde{\Delta}_r = 2^{-r}$.
Let $\tau_0 = 0, t = 1$ and $\mathcal{A}_1 = [K]$
for $r = 1, 2, \ldots$ do

for $\ell \in [|m_r|], i \in \mathcal{A}_r$ in increasing order of index do

Pull arm i , receive feedback Y_t , update $t \leftarrow t + 1$.

Compute $\widehat{\mu}_i(r)$, the empirical average of the feedback for arm i observed during round r

Update active arms:
$$\mathcal{A}_{r+1} = \left\{ i \in \mathcal{A}_r : \max_{j \in \mathcal{A}_r} \widehat{\mu}_j(r) - \widehat{\mu}_i(r) \leq \widetilde{\Delta}_r \right\}$$

Mark τ_r as the end time of round r

Theorem: Suppose Algorithm 1 is run for n time-steps in an Affinity bandit environment with reward means $\mu_i \in [0,1]$. If n is sufficiently large such

that $\log(nK)/\log(\log(nK)) \gtrsim L(1 + \frac{T_{max}^{init} - T_{min}^{init}}{K})$ and $T_{max}^{init} \lesssim \log(nK)$, then the regret of Algorithm 1 is at most:

$$R(n) \lesssim f\left(\frac{1}{15 K}\right)^{-2} \sum_{i:\Delta_i > 0} \frac{\log(n)}{\Delta_i}$$

Proof Outline:

- Since arms played in round-robin manner, the biased feedback reweighting $W_i(t) \approx W_j(t)$ for all **active** i, j (assuming small initial biases)
- Thus, the ordering of the "feedback suboptimality gaps" $\widetilde{\Delta}_i(t) = \widetilde{\mu}_{i^*}(t) \widetilde{\mu}_i(t)$ is (roughly) the same as the reward suboptimality gaps Δ_i .
- Main challenge: the above properties are inexact, so feedback suboptimality gap ordering may not be preserved at all time-steps. Need to ensure arms aren't mistakenly eliminated early!
- Observation: denote $\overline{W}_i(r)$ as the average reweighting of arm i during round r. Then, the average feedback during round r satisfies:

$$\mathbb{E}[\hat{\mu}_{i^*}(r) - \hat{\mu}_{i}(r)] = \mu_{i^*} \overline{W}_{i^*}(r) - \mu_{i} \overline{W}_{i}(r)$$

$$= (\mu_{i^*} - \mu_{i}) \overline{W}_{i^*}(r) + \mu_{i} (\overline{W}_{i^*}(r) - \overline{W}_{i}(r))$$

A **reweighting** of Δ_i A **bias** (can be + or -) Could change ordering of arms w.r.t. avg feedback!

• But our assumptions on bias model guarantees:

$$\mu_{i}|\overline{W}_{i^{*}}(r) - \overline{W}_{i}(r)| \lesssim \widetilde{\Delta}_{r}^{2} L\left(1 + \frac{T_{max}^{init} - T_{min}^{init}}{K}\right) \frac{\log(\log(nK))}{\log(nK)}$$

• As long as this term is $\ll \widetilde{\Delta}_r$ (the elimination criterion), bias term is negligible!

(Nearly tight) Instance-dependent Regret Lower Bound

Paper: https://arxiv.org/abs/2503.05662

Homepage: https://matthewfaw.github.io/

Email: mfaw3@gatech.edu

Theorem: Fix any K > 1, initial biases $(T_i^{init})_{i \in [K]}$, and time horizon n. Then, any "consistent" bandit policy in all unit-variance Gaussian environments with bounded suboptimality gaps must suffer regret at least:

$$R(n) \gtrsim \left[f\left(\mathcal{O}\left(\frac{\log(K)}{K}\right)\right)^{-2} \sum_{i \in B} \frac{\log(n)}{\Delta_i} + \sum_{i \notin B: \Delta_i > 0} \frac{\log(n)}{\Delta_i} \right]$$

for some subset of arms $B \subseteq [K]$, $|B| = \Omega(K)$, as long as $\frac{\Delta_{max}}{\Delta_{max}} \leq poly(K)$.

Remarks:

- Lower bound holds against algorithms which know **exactly** (i) the bias model $f(\cdot)$, (ii) the initial biases T_i^{init} , and (iii) the time horizon n
- Our algorithm nearly achieves this bound without knowing the bias model or initial biases

Proof Outline:

- We build on the lower bound arguments of [KCG16, GMS19]
- Regret decomposition \Rightarrow suffices to lower bound a **constant** fraction of suboptimal arms $i \in [K]$ by:

$$\mathbb{E}[T_i(n)] \gtrsim \frac{K^2}{\log(K)^2} \frac{\log(n)}{\Delta_i^2}$$

Lemma 1 (divergence decomposition + data processing): For any "consistent" bandit policy, any fixed time $n_0 \in [1, n]$ any suboptimal arm i, and any stopping time $\tau_i \in [n_0, n]$:

$$\mathbb{E}\left[\sum_{t=n_0+1}^{\tau_i} f\left(\frac{T_i^{bias}(t-1)}{t^{bias}-1}\right)^2 1\{A_t=i\}\right] \gtrsim \frac{\mathbb{E}[\tau_i]}{n} \frac{\log(n)}{\Delta_i^2} - \frac{n_0}{\Delta_i^2}$$

$$\text{Want} \lesssim \frac{1}{K} \qquad \text{Want} \gtrsim const} \quad \text{Want} \lesssim \frac{\log(n)}{\Delta_i^2}$$

• At any **fixed** time t, pigeonholing \Longrightarrow there is a subset of arms $S_t \subseteq [K]$ s.t.:

$$\frac{T_i^{bias}(t-1)}{t^{bias}-1} = O\left(\frac{1}{K}\right) \text{ and } |S_t| = \Omega(K)$$

- But S_t is **random**, **time-dependent**, and may not be "stable"...
 - E.g., some bandit policy might identify the arms in S_t , pulling each of them until their fraction exceeds 1/K.
 - However, pulling one arm decreases the fraction of every other arm.
- We construct the stopping times (roughly) as:

$$\tau_i = \min \left\{ t \ge n_0 : \frac{T_i^{bias}(t)}{t^{bias}} \gg \frac{1}{K} \text{ or } t = n \right\}$$

• Thus, we show that, for a constant fraction of arms $B' \subseteq S_{n_0}$, each arm $i \in B'$ satisfies one of the following:

(Case 1)
$$\tau_i = n$$
, i.e., $\frac{T_i^{bias}(t)}{t^{bias}} = \tilde{O}\left(\frac{1}{K}\right)$ for every $t \in [n_0, n)$ (Case 2) $\tau_i < n$ and $T_i(n_0, n) \gtrsim f\left(\frac{4}{K}\right)^{-2} \frac{\log(n)}{\Delta_i^2}$

 Pigeonholing ⇒ either Case 1 or Case 2 happens with constant probability for a constant fraction of arms

References

[GMS19]: Aurélien Garivier, Pierre Ménard, and Gilles Stoltz. "Explore first, exploit next: The true shape of regret in bandit problems". In: Mathematics of Operations Research 44.2 (2019),

[KCG16]: Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. "On the complexity of best-arm identification in multi-armed bandit models". In: The Journal of Machine Learning Research 17.1 (2016)

[OA18]: Himani Oberai and Ila Mehrotra Anand. "Unconscious bias: thinking without thinking". In: Human Resource Management International Digest 26.6 (2018) [PS08]: Devah Pager and Hana Shepherd. "The sociology of discrimination: Racial discrimination in employment, housing, credit, and consumer markets". In: Annu. Rev. Sociol 34 (2008),

[RBR19]: Jared A Russell, Sheri Brock, and Mary E Rudisill. "Recognizing the impact of bias in faculty recruitment, retention, and advancement processes". In: Kinesiology Review 8.4 (2019)

[**UC05**]: Eric Luis Uhlmann and Geoffrey L Cohen. "Constructed criteria: Redefining merit to justify discrimination". In: Psychological science 16.6 (2005)