
Proof Outline:
• We build on the lower bound arguments of [KCG16, GMS19]
• Regret decomposition ⟹ suffices to lower bound a constant 

fraction of suboptimal arms 𝑖 ∈ [𝐾] by:
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Lemma 1 (divergence decomposition + data processing): For any 
“consistent” bandit policy, any fixed time 𝑛0 ∈ [1, 𝑛] any suboptimal 
arm 𝑖, and any stopping time 𝜏𝑖 ∈ [𝑛0, 𝑛]:
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Problem Setup

• Affinity bias = Unconscious tendency to favor individuals 
similar to us

• Studies (e.g., [UC05, OA18, PS08, RBR19]) have shown 
affinity bias can:
• Arise from (often changing) media portrayals, cultural 

conditioning, and affinity biases
• Lead to undesirable opinion formation + self-reinforcing 

feedback loops

Our Goal: Investigate effects of evolving biases + feedback 
loops in sequential decision-making problems by introducing 
and studying a biased multi-armed bandit model capturing key 
features of affinity bias

Key Features to Model

1. The system has an initial, perhaps misleading, affinity for each action.
2. Selecting an action increases the system’s affinity towards that action.
3. Selecting an action (slightly) decreases the system’s affinity towards 

other actions

Pull arm 2

(Nearly tight) Instance-dependent 

Regret Lower Bound

Linear Regret when Bias is Ignored

Theorem: Fix any 𝐾 > 1, initial biases 𝑇𝑖
𝑖𝑛𝑖𝑡

𝑖∈[𝐾]
, and time horizon 𝑛. 

Then, any “consistent” bandit policy in all unit-variance Gaussian 
environments with bounded suboptimality gaps must suffer regret at least:

𝑅 𝑛 ≳ 𝑓 𝒪
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for some subset of arms 𝐵 ⊆ 𝐾 , 𝐵 = Ω 𝐾 , as long as 
Δ𝑚𝑎𝑥

Δ𝑚𝑖𝑛
≤ 𝑝𝑜𝑙𝑦(𝐾).

Theorem: There is a 2-armed (biased) bandit instance with 
𝑓 𝑓𝑟𝑎𝑐 = 𝑓𝑟𝑎𝑐, constant suboptimality gap and initial biases such 
that, for all 𝑛 sufficiently large,

𝑅 𝑛 = Ω 𝑛 .

Proof Outline:

• Since arms played in round-robin manner, the biased feedback reweighting 
𝑊𝑖 𝑡 ≈ 𝑊𝑗(𝑡) for all active 𝑖, 𝑗 (assuming small initial biases)

• Thus, the ordering of the “feedback suboptimality gaps” ෩Δ𝑖 𝑡 = ෤𝜇𝑖∗ 𝑡 − ෤𝜇𝑖 𝑡  
is (roughly) the same as the reward suboptimality gaps Δ𝑖.

• Main challenge: the above properties are inexact, so feedback suboptimality 
gap ordering may not be preserved at all time-steps. Need to ensure arms 
aren’t mistakenly eliminated early!

• Observation: denote ഥ𝑊𝑖(𝑟) as the average reweighting of arm 𝑖 during round 𝑟. 
Then, the average feedback during round 𝑟 satisfies:

𝔼 Ƹ𝜇𝑖∗ 𝑟  − Ƹ𝜇𝑖 𝑟 = 𝜇𝑖∗ ഥ𝑊𝑖∗(𝑟) − 𝜇𝑖
ഥ𝑊𝑖(𝑟)
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• At any fixed time 𝑡, pigeonholing ⟹ there is a subset of arms 𝑆𝑡 ⊆ [𝐾] 
s.t.:

𝑇𝑖
𝑏𝑖𝑎𝑠 𝑡−1

𝑡𝑏𝑖𝑎𝑠−1
= 𝑂

1

𝐾
 and 𝑆𝑡 = Ω(𝐾)

• But 𝑆𝑡 is random, time-dependent, and may not be “stable”…
• E.g., some bandit policy might identify the arms in 𝑆𝑡, pulling 

each of them until their fraction exceeds 1/𝐾.
• However, pulling one arm decreases the fraction of every 

other arm.
• We construct the stopping times (roughly) as:

𝜏𝑖 = min 𝑡 ≥ 𝑛0 ∶
𝑇𝑖

𝑏𝑖𝑎𝑠 𝑡

𝑡𝑏𝑖𝑎𝑠
≫

1

𝐾
 𝑜𝑟 𝑡 = 𝑛

• Thus, we show that, for a constant fraction of arms 𝐵′ ⊆ 𝑆𝑛0
, each arm 

𝑖 ∈ 𝐵′ satisfies one of the following:

      (Case 1) 𝜏𝑖 = 𝑛, i.e.,
𝑇𝑖

𝑏𝑖𝑎𝑠 𝑡

𝑡𝑏𝑖𝑎𝑠 = ෨𝑂
1

𝐾
 for every 𝑡 ∈ [𝑛0, 𝑛)

      (Case 2) 𝜏𝑖 < 𝑛 and 𝑇𝑖(𝑛0, 𝑛) ≳ 𝑓
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• Pigeonholing ⟹ either Case 1 or Case 2 happens with constant 
probability for a constant fraction of arms

True means 
𝜇𝑖

Biased means 
෤𝜇𝑖(𝑡)

True means in 
coupled 

environment 
෤𝜇𝑖

𝑠𝑡

Proof Outline:

• We begin by considering the following event:

ℬ𝑡 = ሩ

𝑠∈[𝑡]

{ ෤𝜇1 𝑠 = 𝜇1𝑊1(𝑠) ≤ ෤𝜇1
𝑠𝑡 < ෤𝜇2

𝑠𝑡 ≤ 𝜇2𝑊2(𝑠) = ෤𝜇2(𝑠)}

• Choose initial biases such that ℬ1 is deterministically true
• As long as ℬ𝑡 is true, can couple samples between biased environment and 

“coupled” environment s.t.:
෨𝑇1

𝑠𝑡 𝑠 ≥ 𝑇1 𝑠  ∀𝑠 ≤ 𝑡
• ℬ𝑡 is challenging to reason about directly, since it depends on the dynamics 

in both environments. However, one can show that, for 𝜀 sufficiently small, 
there are times 1 < 𝑡1 < ⋯ < 𝑡𝑅 = 𝑡 s.t.:

෩ℬ𝑡 = ሩ

𝑟∈[𝑅]

{ ෨𝑇1 𝑡𝑟 ≤ 𝜀 𝑡𝑟} ⊆ ℬ𝑡

• Can lower bound Pr ෩ℬ𝑡 ≥ .99 using (anytime) high-probability guarantees 
for UCB

• Conclusion: since ෨𝑇1
𝑠𝑡 𝑛 ≤ 𝜀𝑛 with high probability, and ෩ℬ𝑡 implies that 

𝑇1(𝑛) ≤ ෨𝑇1
𝑠𝑡 𝑛 , UCB must suffer linear regret in the biased environment.

Biased mean of 
optimal arm

Biased mean of 
suboptimal arm
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Affinity Bandit Model

• 𝐾-armed Gaussian bandit instance 𝜈𝑖 = 𝑁(𝜇𝑖 , 1) 𝑖∈[𝐾], Δ𝑖 = max
𝑗

𝜇𝑗 − 𝜇𝑖

• Each arm 𝑖 ∈ [𝐾] has an “initial bias” 𝑇𝑖
𝑖𝑛𝑖𝑡 ≥ 0, 𝑇𝑖𝑛𝑖𝑡 = σ𝑖∈[𝐾] 𝑇𝑖

𝑖𝑛𝑖𝑡

• Rewards 𝑅𝑖,𝑡 ∼ 𝜈𝑖  for each arm 𝑖 are unobserved.
• Interaction model: For t=1,…,n
         Select arm 𝐴𝑡 ∈ 𝐾
         Observe (biased) feedback 𝐹𝑡 ∼ ෤𝜈𝑖 𝑡 = 𝑁( ෤𝜇𝑖 𝑡 , 1)
         Update 𝑇𝐴𝑡

𝑡 += 1

• Biased feedback model: if 𝐴𝑡 = 𝑖, 𝐹𝑡  has mean:

෤𝜇𝑖 𝑡 = 𝜇𝑖 ⋅ 𝑊𝑖 𝑡 = 𝜇𝑖 ⋅ 𝑓
𝑇𝑖

𝑖𝑛𝑖𝑡  +  𝑇𝑖 𝑡 − 1

𝑇𝑖𝑛𝑖𝑡  +  𝑡 − 1
= 𝜇𝑖 ⋅ 𝑓

𝑇𝑖
𝑏𝑖𝑎𝑠 𝑡 − 1

𝑡𝑏𝑖𝑎𝑠 − 1

• 𝑓 ⋅ ∈ [0,1] is unknown, bounded, 𝐿-Lipschitz

Objective: minimize regret w.r.t. true (unobserved) rewards:

𝑅 𝑛 = ෍

𝑡∈[𝑛]

max
𝑖∈[𝐾]

𝔼[𝑅𝑖,𝑡  − 𝑅𝐴𝑡,𝑡] = ෍

𝑖∈[𝐾]

Δ𝑖𝔼[𝑇𝑖(𝑛)]

initial bias Frac times 𝑖 
played before 𝑡

Elimination + Round-Robin achieves 

Sublinear Regret

Remarks:
• Lower bound holds against algorithms which know exactly (i) the bias 

model 𝑓(⋅), (ii) the initial biases 𝑇𝑖
𝑖𝑛𝑖𝑡, and (iii) the time horizon 𝑛 

• Our algorithm nearly achieves this bound without knowing the bias 
model or initial biases

Theorem: Suppose Algorithm 1 is run for 𝑛 time-steps in an Affinity bandit 
environment with reward means 𝜇𝑖 ∈ [0,1]. If 𝑛 is sufficiently large such 

that log 𝑛𝐾 /log(log 𝑛𝐾 ) ≳ 𝐿(1 +
𝑇𝑚𝑎𝑥

𝑖𝑛𝑖𝑡 −𝑇𝑚𝑖𝑛
𝑖𝑛𝑖𝑡

𝐾
) and 𝑇𝑚𝑎𝑥

𝑖𝑛𝑖𝑡 ≲ log(𝑛𝐾), 

then the regret of Algorithm 1 is at most:

𝑅(𝑛) ≲ 𝑓
1

15 𝐾
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𝑖:Δ𝑖>0

log 𝑛

Δ𝑖
 

= (𝜇𝑖∗  −𝜇𝑖) ഥ𝑊𝑖∗(𝑟) + 𝜇𝑖( ഥ𝑊𝑖∗ 𝑟 − ഥ𝑊𝑖(𝑟))

A reweighting of Δ𝑖 A bias (can be + or −)
Could change ordering
of arms w.r.t. avg feedback!

• But our assumptions on bias model guarantees:

𝜇𝑖
ഥ𝑊𝑖∗ 𝑟 − ഥ𝑊𝑖 𝑟 ≲ ෩Δ𝑟

2  𝐿 1 +
𝑇𝑚𝑎𝑥

𝑖𝑛𝑖𝑡 − 𝑇𝑚𝑖𝑛
𝑖𝑛𝑖𝑡

𝐾

log(log 𝑛𝐾)

log(𝑛𝐾)

• As long as this term is ≪ ෩Δ𝑟  (the elimination criterion), bias term is negligible!
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