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Ã

V

Ṽ
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Part 1: error guarantees



Approximate matrix multiplication 

How do we select  points?nout
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Guarantees: rank-r

Assume data is low-rank 
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Part II: speed results



Results

ViT on Imagenet, replacing two layers at inference



Hardware lessons

• Moving data >> performing GPU computations 

• Matrix multiplication << other operations 

• Non-parallel and element wise operations: slow

(Horace He, blog post) 



Efficiency hacks

• Load tensors onto device when initialized (moving data) 

• Fuse elementwise operations using torch.compile() (element wise operations are slow) 

• Only copy data when necessary (repeat() vs view()) (initializing/moving data) 

• “Vectorise” any operation (matmuls are efficient)



Parallelism: what works

( ): 

If  return  

1.   // divide input into 4 

2. For X_i : 

 <- ( ) 

3.  // concatenate 

4. return ( )

THIN X

|X | = 4g X

X1, X2, X3, X4 < − X

i ∈ [1,2,3,4]

Si THIN Xi

S = [S1, S2, S3, S4]

HALVE S

( ): 

\\ return  points by selecting one point 
from each pair based on a threshold 

Subroutine parallelizable!

HALVE X

X/2
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Parallelism: changes

( ): 

\\ return  points by selecting one point from each pair 
based on a threshold 

Threshold adaptive based on previous rounds 

Simpler, faster threshold

HALVE X

X/2



Takeaways

• Bake empirical observations into assumptions (rank-r data) 

• Provide guarantees for practical algorithms 

• Make hardware-aware algorithms (parallelizable) 

• Adapt algorithms if needed!



Bonus


