Efficient Attention

Lessons for theory-driven algorithm design

CS in two questions

- 1. Can we compute it?
- 2. How fast?

CS in two questions

- 1. Can we compute it?
- 2. How fast?

Low-rank Thinning

With Lester Mackey, Albert Gong, Abhishek Shetty & Raaz Dwivedi

Attention approximation

• Attention: runtime quadratic in sequence length

Attention approximation

- Attention: runtime quadratic in sequence length
- Method: perform partial attention computation

Attention approximation

- Attention: runtime quadratic in sequence length
- Method: perform partial attention computation
- Goals: low error (similar quality to full attention) and fast

Thinformer

n Exact attention $\Theta(n^2d)$ Thinformer $\Theta(nn_{out}d)$ n_{out} n_{out}

Thinformer

Attention $(Q, K, V \in \mathbb{R}^{n \times d}) = D^{-1}AV$, where

$$A = \exp(QK^T/\sqrt{d}) \quad D = \operatorname{diag}(A1_n)$$

Thinformer

Attention $(Q, K, V \in \mathbb{R}^{n \times d}) = D^{-1}AV$, where

$$A = \exp(QK^T/\sqrt{d}) \quad D = \operatorname{diag}(A1_n)$$

Thinformer($Q, K, V \in \mathbb{R}^{n \times d}$):

 \tilde{K} , \tilde{V} <- THIN(K, V) // subselect n_{out} points

Then $D^{-1}\tilde{A}\tilde{V}$, where

$$\tilde{A} = \exp(Q\tilde{K}^T/\sqrt{d})$$

(Dwivedi and Mackey'21, '22, Shetty-Dwivedi-Mackey '22)**

Part 1: error guarantees

Approximate matrix multiplication

$$\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times d}$$

$$(\mathbf{A}\mathbf{B}^{\top})_{ij} = \langle \mathbf{A}_{i;.}, \mathbf{B}_{:;j}^{\top} \rangle = \sum_{k=1}^{n} \mathbf{A}_{ik} \mathbf{B}_{kj}^{\top} \approx \sum_{k=1}^{n_{\text{out}}} \mathbf{A}_{ik} \mathbf{B}_{kj}^{\top}.$$

How do we select n_{out} points?

Problem setup: thinning 1-d

Data points $X \triangleq [x_1, ..., x_n] \in \mathbb{R}^n$

Problem setup: thinning 1-d

Data points $X \triangleq [x_1, ..., x_n] \in \mathbb{R}^n$

Goal: Select n_{out} points "representative" of X

How do we measure? Difference in means

Problem setup: thinning 1-d

Data points
$$X \triangleq [x_1, ..., x_n] \in \mathbb{R}^n$$

Goal: Select n_{out} points "representative" of X

How do we measure? Difference in means

$$p = [1/n, ..., 1/n] \in \mathbb{R}^n \ q = [0, 1/n_{out}, 1/n_{out}, 0, ..., 0] \in \mathbb{R}^n$$

$$\mathbb{E}_p[x] - \mathbb{E}_q[x] = X^T p - X^T q$$

Guarantees: 1-d case

Assume from our thinning algorithm $X^Tp - X^Tq$ is sub-Gaussian: (Dwivedi and Mackey '21, '22)

$$\mathbb{E}\left[\exp(t(X^T p - X^T q))\right] \le \exp\left(\frac{\nu^2 t^2}{2(1-\varepsilon)^2}\right) \quad (\varepsilon > 0 \ t > 0)$$

Guarantees: 1-d case

Assume from our thinning algorithm $X^Tp - X^Tq$ is sub-Gaussian:

(Dwivedi and Mackey '21, '22)

$$\mathbb{E}\left[\exp(t(X^Tp - X^Tq))\right] \le \exp\left(\frac{\nu^2 t^2}{2(1-\varepsilon)^2}\right) \quad (\varepsilon > 0 \ t > 0)$$

$$\mathbb{P}(X^T p - X^T q \ge t) \le \frac{\mathbb{E}[\exp(\lambda(X^T p - X^T q))]}{\exp(\lambda t)}$$

Guarantees: 1-d case

Assume from our thinning algorithm $X^Tp - X^Tq$ is sub-Gaussian: (Dwivedi and Mackey '21, '22)

$$\mathbb{E}\left[\exp(t(X^Tp - X^Tq))\right] \le \exp\left(\frac{\nu^2 t^2}{2(1-\varepsilon)^2}\right) \quad (\varepsilon > 0 \ t > 0)$$

$$\mathbb{P}(X^T p - X^T q \ge t) \le \frac{\mathbb{E}[\exp(\lambda(X^T p - X^T q))]}{\exp(\lambda t)}$$

With prob $1 - \varepsilon$,

$$X^T p - X^T q \leq \dots$$

Problem setup: thinning high-dimensional

Data points $X \triangleq [x_1, ..., x_n] \in \mathbb{R}^{n \times d}$

Problem setup: thinning high-dimensional

Data points $X \triangleq [x_1, ..., x_n] \in \mathbb{R}^{n \times d}$

Goal: Select n_{out} points "representative" of X

How do we measure? Difference in means

Problem setup: thinning high-dimensional

Data points
$$X \triangleq [x_1, ..., x_n] \in \mathbb{R}^{n \times d}$$

Goal: Select n_{out} points "representative" of X

How do we measure? Difference in means

$$p = [1/n, ..., 1/n] \in \mathbb{R}^n \ q = [0, 1/n_{out}, 1/n_{out}, 0, ..., 0] \in \mathbb{R}^n$$

$$\mathbb{E}_p[x] - \mathbb{E}_q[x] = X^T p - X^T q \in \mathbb{R}^d$$

$$||X^Tp - X^Tq||$$

$$\mathbb{E}\left[\exp\left(t \parallel X^{T}p - X^{T}q \parallel_{2}\right)\right]$$

$$\mathbb{E}\left[\exp\left(t \mid \mid X^{T}p - X^{T}q \mid \mid_{2}\right)\right] \leq \mathbb{E}\left[\exp\left(t \cdot \frac{1}{1 - \varepsilon} \max_{u \in \mathscr{C}_{e,d}} \langle \mathbf{u}, X^{T}p - X^{T}q \rangle\right)\right]$$

$$= \mathbb{E}\left[\max_{u \in \mathscr{C}_{e,d}} \exp\left(\frac{t}{1 - \varepsilon} \langle \mathbf{u}, X^{T}p - X^{T}q \rangle\right)\right]$$

$$\mathbb{E}\left[\exp\left(t \mid \mid X^{T}p - X^{T}q \mid \mid_{2}\right)\right] \leq \mathbb{E}\left[\exp\left(t \cdot \frac{1}{1 - \varepsilon} \max_{u \in \mathcal{C}_{\varepsilon, d}} \langle \mathbf{u}, X^{T}p - X^{T}q \rangle\right)\right]$$

$$= \mathbb{E}\left[\max_{u \in \mathcal{C}_{\varepsilon, d}} \exp\left(\frac{t}{1 - \varepsilon} \langle \mathbf{u}, X^{T}p - X^{T}q \rangle\right)\right]$$

$$\leq \sum_{u \in \mathcal{C}} \mathbb{E}\left[\exp\left(\frac{t}{1 - \varepsilon} \langle \mathbf{u}, X^{T}p - X^{T}q \rangle\right)\right] \qquad \left|\mathcal{C}_{\varepsilon, d}\right| \leq \left(\frac{t}{1 - \varepsilon} \langle \mathbf{u}, X^{T}p - X^{T}q \rangle\right)$$

$$\left|\mathscr{C}_{\varepsilon,d}\right| \leq \left(1 + \frac{2}{\varepsilon}\right)^d$$

$$\mathbb{E}\left[\exp\left(t \mid \mid X^{T}p - X^{T}q \mid \mid_{2}\right)\right] \leq \mathbb{E}\left[\exp\left(t \cdot \frac{1}{1 - \varepsilon} \max_{u \in \mathscr{C}_{\varepsilon, d}} \langle \mathbf{u}, X^{T}p - X^{T}q \rangle\right)\right]$$

$$= \mathbb{E}\left[\max_{u \in \mathscr{C}_{\varepsilon, d}} \exp\left(\frac{t}{1 - \varepsilon} \langle \mathbf{u}, X^{T}p - X^{T}q \rangle\right)\right]$$

$$\leq \sum_{u \in \mathscr{C}} \mathbb{E}\left[\exp\left(\frac{t}{1 - \varepsilon} \langle \mathbf{u}, X^{T}p - X^{T}q \rangle\right)\right]$$

$$\left|\mathscr{C}_{\varepsilon, d}\right| \leq \left(1 + \frac{2}{\varepsilon}\right)^{d}$$

$$||X^T p - X^T q||_2 \le d + \log(...)$$

$$||X^T p - X^T q||_2 = MMD_K(p,q)$$
 $K = XX^T$ (linear kernel)

max-mean discrepancy

$$||X^T p - X^T q||_2 = MMD_K(p,q)$$
 $K = XX^T$ (linear kernel)

max-mean discrepancy

Definition (informal)

THIN is K-sub-Gaussian if:

$$\mathbb{E}\left[\exp\left(\langle \mathbf{u}, \mathbf{K}(\mathbf{p} - \mathbf{q})\rangle\right)\right] \le \exp\left(\frac{\nu^2}{2}\mathbf{u}^{\mathsf{T}}\mathbf{K}\mathbf{u}\right), \quad \forall \mathbf{u} \in \mathbb{R}^n.$$

K: any symmetric PSD matrix

Assume data is low-rank

Theorem (informal):

If THIN is K-sub-Gaussian (def), assuming K is rank r with prob $1 - \delta - \delta'$,

$$MMD_K^2(\mathbf{p}_{\text{in}}, \mathbf{q}_{\text{out}}) \le \nu^2 \left[7.4r + 2.8 \log \left(\frac{1}{\delta'} \right) \right] + \lambda_{r+1} \left(\frac{1}{n_{\text{out}}} - \frac{1}{n_{\text{in}}} \right)$$

Theorem (informal):

If THIN is K-sub-Gaussian (def), assuming K is rank r with prob $1-\delta-\delta'$,

$$MMD_K^2(\mathbf{p}_{\text{in}}, \mathbf{q}_{\text{out}}) \le \nu^2 \left[7.4r + 2.8 \log \left(\frac{1}{\delta'} \right) \right] + \lambda_{r+1} \left(\frac{1}{n_{\text{out}}} - \frac{1}{n_{\text{in}}} \right)$$

Theorem (informal):

If THIN is K-sub-Gaussian (def), assuming K is rank r with prob $1-\delta-\delta'$,

$$MMD_K^2(\mathbf{p}_{\text{in}}, \mathbf{q}_{\text{out}}) \le \nu^2 \left[7.4r + 2.8 \log \left(\frac{1}{\delta'} \right) \right] + \lambda_{r+1} \left(\frac{1}{n_{\text{out}}} - \frac{1}{n_{\text{in}}} \right)$$

Rank r term

Theorem (informal):

If THIN is K-sub-Gaussian (def), assuming K is rank r with prob $1-\delta-\delta'$,

$$MMD_K^2(\mathbf{p}_{in}, \mathbf{q}_{out}) \le \nu^2 \left[7.4r + 2.8 \log \left(\frac{1}{\delta'} \right) \right] + \lambda_{r+1} \left(\frac{1}{n_{out}} - \frac{1}{n_{in}} \right)$$

Rank r term

Residual term

Part II: speed results

Results

ViT on Imagenet, replacing two layers at inference

Attention Algorithm	Top-1 Accuracy (%)	Layer 1 Runtime (ms)	Layer 2 Runtime (ms)
Exact	82.55 ± 0.00	18.48 ± 0.12	1.40 ± 0.01
Performer	80.56 ± 0.30	2.54 ± 0.01	0.60 ± 0.01
Reformer	81.47 ± 0.06	7.84 ± 0.03	1.53 ± 0.01
KDEformer	82.00 ± 0.07	5.39 ± 0.03	2.28 ± 0.03
Scatterbrain	82.05 ± 0.08	6.86 ± 0.02	1.55 ± 0.03
Thinformer (Ours)	82.18 ± 0.05	2.06 ± 0.01	0.54 ± 0.00

Hardware lessons

- Moving data >> performing GPU computations
- Matrix multiplication << other operations
- Non-parallel and element wise operations: slow

(Horace He, blog post)

Efficiency hacks

- Load tensors onto device when initialized (moving data)
- Fuse elementwise operations using torch.compile() (element wise operations are slow)
- Only copy data when necessary (repeat() vs view()) (initializing/moving data)
- "Vectorise" any operation (matmuls are efficient)

Parallelism: what works

THIN(*X*):

If
$$X = 4^g$$
 return X

- 1. $X_1, X_2, X_3, X_4 < -X$ // divide input into 4
- 2. For X_i $i \in [1,2,3,4]$:

$$S_i \leftarrow \mathsf{THIN}(X_i)$$

- 3. $S = [S_1, S_2, S_3, S_4] //$ concatenate
- 4. return HALVE(S)

HALVE(X):

\\ return X/2 points by selecting one point from each pair based on a threshold

Subroutine parallelizable!

Parallelism: changes

HALVE(X):

\\ return X/2 points by selecting one point from each pair based on a threshold

Threshold adaptive based on previous rounds

Parallelism: changes

HALVE(X):

\\ return X/2 points by selecting one point from each pair based on a threshold

Threshold adaptive based on previous rounds

Simpler, faster threshold

Takeaways

- Bake empirical observations into assumptions (rank-r data)
- Provide guarantees for practical algorithms
- Make hardware-aware algorithms (parallelizable)
- Adapt algorithms if needed!

Bonus

For any indices $\mathcal{I} \subseteq [n]$, we further define the kernel max seminorm (KMS)

$$\|\mathbf{K}(\boldsymbol{p}_{\text{in}} - \boldsymbol{p}_{\text{out}})\|_{\mathcal{I}} \triangleq \max_{i \in \mathcal{I}} |\boldsymbol{e}_{i}^{\top} \mathbf{K}(\boldsymbol{p}_{\text{in}} - \boldsymbol{p}_{\text{out}})|.$$
 (2)

Theorem 1 (Low-rank sub-Gaussian thinning). Fix any $\delta' \in (0,1)$, $r \leq n$, and $\mathcal{I} \subseteq [n]$. If $ALG \in \mathcal{G}_{\nu,\delta}(\mathbf{K})$, then the following bounds hold individually with probability at least $1 - \delta/2 - \delta'$:

$$\operatorname{MMD}_{\mathbf{K}}^{2}(\boldsymbol{p}_{\text{in}}, \boldsymbol{p}_{\text{out}}) \leq \nu^{2} \left[e^{2} r + e \log\left(\frac{1}{\delta'}\right) \right] \\
+ \lambda_{r+1} \left(\frac{1}{n_{\text{out}}} - \frac{1}{n_{\text{in}}}\right) \quad and \tag{3}$$

$$\|\mathbf{K}(\boldsymbol{p}_{\text{in}} - \boldsymbol{p}_{\text{out}})\|_{\mathcal{I}} \le \nu D_{\mathcal{I}} \sqrt{2\log(\frac{2|\mathcal{I}|}{\delta'})}.$$
 (4)

Here, λ_j denotes the j-th largest eigenvalue of \mathbf{K} , $\lambda_{n+1} \triangleq 0$, and $D_{\mathcal{I}} \triangleq \max_{i \in \mathcal{I}} \sqrt{\mathbf{K}_{ii}}$.

Suppose that, in addition, $\mathcal{X} \subset \mathbb{R}^d$ and $|\mathbf{K}_{il} - \mathbf{K}_{jl}| \leq L_{\mathbf{K}} ||\mathbf{x}_i - \mathbf{x}_j||_2$ for some $L_{\mathbf{K}} > 0$ and all $i, j \in \mathcal{I}$ and $l \in \operatorname{supp}(\mathbf{p}_{in})$. Then, with probability at least $1 - \delta/2 - \delta'$,

$$\|\mathbf{K}(\boldsymbol{p}_{\text{in}} - \boldsymbol{p}_{\text{out}})\|_{\mathcal{I}} \leq \nu D_{\mathcal{I}} \sqrt{2\log(4/\delta')} (1 + \frac{32}{\sqrt{3}})$$
$$+ \nu D_{\mathcal{I}} 32 \sqrt{\frac{2}{3} \operatorname{rank}(\mathbf{X}_{\mathcal{I}}) \log(\frac{3e^{2}R_{\mathcal{I}}L_{\mathbf{K}}}{D_{\mathcal{I}}^{2} \wedge (R_{\mathcal{I}}L_{\mathbf{K}})})}$$
(5)

for $R_{\mathcal{I}} \triangleq \max_{i \in \mathcal{I}} \|\boldsymbol{x}_i\|_2$ and $\mathbf{X}_{\mathcal{I}} \triangleq [\boldsymbol{x}_i]_{i \in \mathcal{I}}^{\top}$.