
Lessons for theory-driven algorithm design

Efficient Attention

CS in two questions

1. Can we compute it?

2. How fast?

CS in two questions

1. Can we compute it?

2. How fast?

This talk

With Lester Mackey, Albert Gong, Abhishek Shetty & Raaz Dwivedi

Low-rank Thinning

Attention approximation

•Attention: runtime quadratic in sequence length

•Method: perform partial attention computation

•Goals: low error (similar quality to full attention) and fast

Attention approximation

•Attention: runtime quadratic in sequence length

•Method: perform partial attention computation

•Goals: low error (similar quality to full attention) and fast

Attention approximation

•Attention: runtime quadratic in sequence length

•Method: perform partial attention computation

•Goals: low error (similar quality to full attention) and fast

Thinformer

Exact attention

Thinformer

Θ(n2d)

Θ(nnoutd)

n

n

n

n

d

d
nout

nout

×

×

A

Ã

V

Ṽ

Thinformer

Attention() = , where

Thinformer():

, <- () // subselect points

 Then , where

Q, K, V ∈ ℝn×d D−1AV

A = exp(QKT / d) D = diag(A1n)

Q, K, V ∈ ℝn×d

K̃ Ṽ THIN K, V nout

D−1ÃṼ

Ã = exp(QK̃T / d) (Dwivedi and Mackey’21, ’22, Shetty-Dwivedi-Mackey ’22)**

** a few changes

Thinformer

Attention() = , where

Thinformer():

, <- () // subselect points

 Then , where

Q, K, V ∈ ℝn×d D−1AV

A = exp(QKT / d) D = diag(A1n)

Q, K, V ∈ ℝn×d

K̃ Ṽ THIN K, V nout

D−1ÃṼ

Ã = exp(QK̃T / d) (Dwivedi and Mackey’21, ’22, Shetty-Dwivedi-Mackey ’22)**

** a few changes

Part 1: error guarantees

Approximate matrix multiplication

How do we select points?nout

Problem setup: thinning 1-d

Data points

Goal: Select points “representative” of

How do we measure? Difference in means

X ≜ [x1, …, xn] ∈ ℝn

nout X

p = [1/n, …,1/n] ∈ ℝn q = [0,1/nout,1/nout,0,…,0] ∈ ℝn

𝔼p[x] − 𝔼q[x] = XTp − XTq

Problem setup: thinning 1-d

Data points

Goal: Select points “representative” of

How do we measure? Difference in means

X ≜ [x1, …, xn] ∈ ℝn

nout X

p = [1/n, …,1/n] ∈ ℝn q = [0,1/nout,1/nout,0,…,0] ∈ ℝn

𝔼p[x] − 𝔼q[x] = XTp − XTq

Problem setup: thinning 1-d

Data points

Goal: Select points “representative” of

How do we measure? Difference in means

X ≜ [x1, …, xn] ∈ ℝn

nout X

p = [1/n, …,1/n] ∈ ℝn q = [0,1/nout,1/nout,0,…,0] ∈ ℝn

𝔼p[x] − 𝔼q[x] = XTp − XTq

Guarantees: 1-d case
Assume from our thinning algorithm is sub-Gaussian:

XTp − XTq

𝔼 [exp(t(XTp − XTq))] ≤ exp (ν2t2

2(1 − ε)2) (ε > 0 t > 0)

ℙ(|XTp − XTq | ≥ t) ≤
𝔼[exp(λ(XTp − XTq))]

exp(λt)

With prob , 1 − ε

|XTp − XTq | ≤ …

(Dwivedi and Mackey ’21, ‘22)

Guarantees: 1-d case
Assume from our thinning algorithm is sub-Gaussian:

XTp − XTq

𝔼 [exp(t(XTp − XTq))] ≤ exp (ν2t2

2(1 − ε)2) (ε > 0 t > 0)

ℙ(|XTp − XTq | ≥ t) ≤
𝔼[exp(λ(XTp − XTq))]

exp(λt)

With prob , 1 − ε

|XTp − XTq | ≤ …

(Dwivedi and Mackey ’21, ‘22)

Guarantees: 1-d case
Assume from our thinning algorithm is sub-Gaussian:

XTp − XTq

𝔼 [exp(t(XTp − XTq))] ≤ exp (ν2t2

2(1 − ε)2) (ε > 0 t > 0)

ℙ(|XTp − XTq | ≥ t) ≤
𝔼[exp(λ(XTp − XTq))]

exp(λt)

With prob , 1 − ε

|XTp − XTq | ≤ …

(Dwivedi and Mackey ’21, ‘22)

Problem setup: thinning high-dimensional
Data points

Goal: Select points “representative” of

How do we measure? Difference in means

X ≜ [x1, …, xn] ∈ ℝn×d

nout X

p = [1/n, …,1/n] ∈ ℝn q = [0,1/nout,1/nout,0,…,0] ∈ ℝn

𝔼p[x] − 𝔼q[x] = XTp − XTq ∈ ℝd

∥XTp − XTq∥

Problem setup: thinning high-dimensional
Data points

Goal: Select points “representative” of

How do we measure? Difference in means

X ≜ [x1, …, xn] ∈ ℝn×d

nout X

p = [1/n, …,1/n] ∈ ℝn q = [0,1/nout,1/nout,0,…,0] ∈ ℝn

𝔼p[x] − 𝔼q[x] = XTp − XTq ∈ ℝd

∥XTp − XTq∥

Problem setup: thinning high-dimensional
Data points

Goal: Select points “representative” of

How do we measure? Difference in means

X ≜ [x1, …, xn] ∈ ℝn×d

nout X

p = [1/n, …,1/n] ∈ ℝn q = [0,1/nout,1/nout,0,…,0] ∈ ℝn

𝔼p[x] − 𝔼q[x] = XTp − XTq ∈ ℝd

∥XTp − XTq∥

Guarantees: high-d

𝔼 [exp (t XTp − XTq
2)] ≤ 𝔼 exp (t ⋅

1
1 − ε

max
u∈𝒞ε,d

⟨u, XTp − XTq⟩)
= 𝔼 [max

u∈𝒞ε,d

exp (t
1 − ε

⟨u, XTp − XTq⟩)]
≤ ∑

u∈𝒞ε,d

𝔼 [exp (t
1 − ε

⟨u, XTp − XTq)] 𝒞ε,d ≤ (1 +
2
ε)

d

∥XTp − XTq∥2 ≤ d + log(…)

Guarantees: high-d

𝔼 [exp (t XTp − XTq
2)] ≤ 𝔼 exp (t ⋅

1
1 − ε

max
u∈𝒞ε,d

⟨u, XTp − XTq⟩)
= 𝔼 [max

u∈𝒞ε,d

exp (t
1 − ε

⟨u, XTp − XTq⟩)]
≤ ∑

u∈𝒞ε,d

𝔼 [exp (t
1 − ε

⟨u, XTp − XTq)] 𝒞ε,d ≤ (1 +
2
ε)

d

∥XTp − XTq∥2 ≤ d + log(…)

Guarantees: high-d

𝔼 [exp (t XTp − XTq
2)] ≤ 𝔼 exp (t ⋅

1
1 − ε

max
u∈𝒞ε,d

⟨u, XTp − XTq⟩)
= 𝔼 [max

u∈𝒞ε,d

exp (t
1 − ε

⟨u, XTp − XTq⟩)]
≤ ∑

u∈𝒞ε,d

𝔼 [exp (t
1 − ε

⟨u, XTp − XTq)] 𝒞ε,d ≤ (1 +
2
ε)

d

∥XTp − XTq∥2 ≤ d + log(…)

Guarantees: high-d

𝔼 [exp (t XTp − XTq
2)] ≤ 𝔼 exp (t ⋅

1
1 − ε

max
u∈𝒞ε,d

⟨u, XTp − XTq⟩)
= 𝔼 [max

u∈𝒞ε,d

exp (t
1 − ε

⟨u, XTp − XTq⟩)]
≤ ∑

u∈𝒞ε,d

𝔼 [exp (t
1 − ε

⟨u, XTp − XTq)] 𝒞ε,d ≤ (1 +
2
ε)

d

∥XTp − XTq∥2 ≤ d + log(…)

Guarantees: rank-r

 (linear kernel)

max-mean discrepancy

Definition (informal)

 is K-sub-Gaussian if:

∥XTp − XTq∥2 = MMDK(p, q) K = XXT

THIN

𝔼 [exp (⟨u, K(p − q)⟩)] ≤ exp (ν2

2
u⊤Ku), ∀u ∈ ℝn .

: any symmetric PSD matrixK

Guarantees: rank-r

 (linear kernel)

max-mean discrepancy

Definition (informal)

 is K-sub-Gaussian if:

∥XTp − XTq∥2 = MMDK(p, q) K = XXT

THIN

𝔼 [exp (⟨u, K(p − q)⟩)] ≤ exp (ν2

2
u⊤Ku), ∀u ∈ ℝn .

: any symmetric PSD matrixK

Guarantees: rank-r

Assume data is low-rank

Theorem (informal):

If is -sub-Gaussian (def), assuming is rank with prob , THIN K K r 1 − δ − δ′￼

MMD2
K(pin, qout) ≤ ν2 [7.4r + 2.8 log (1

δ′￼)] + λr+1 (1
nout

−
1

nin)

Guarantees: rank-r

Theorem (informal):

If is K-sub-Gaussian (def), assuming is rank with prob , THIN K r 1 − δ − δ′￼

MMD2
K(pin, qout) ≤ ν2 [7.4r + 2.8 log (1

δ′￼)] + λr+1 (1
nout

−
1

nin)

Guarantees: rank-r

Theorem (informal):

If is K-sub-Gaussian (def), assuming is rank with prob , THIN K r 1 − δ − δ′￼

MMD2
K(pin, qout) ≤ ν2 [7.4r + 2.8 log (1

δ′￼)] + λr+1 (1
nout

−
1

nin)

Rank termr

Guarantees: rank-r

Theorem (informal):

If is K-sub-Gaussian (def), assuming is rank with prob , THIN K r 1 − δ − δ′￼

MMD2
K(pin, qout) ≤ ν2 [7.4r + 2.8 log (1

δ′￼)] + λr+1 (1
nout

−
1

nin)

Rank termr Residual term

Part II: speed results

Results

ViT on Imagenet, replacing two layers at inference

Hardware lessons

• Moving data >> performing GPU computations

• Matrix multiplication << other operations

• Non-parallel and element wise operations: slow

(Horace He, blog post)

Efficiency hacks

• Load tensors onto device when initialized (moving data)

• Fuse elementwise operations using torch.compile() (element wise operations are slow)

• Only copy data when necessary (repeat() vs view()) (initializing/moving data)

• “Vectorise” any operation (matmuls are efficient)

Parallelism: what works

():

If return

1. // divide input into 4

2. For X_i :

 <- ()

3. // concatenate

4. return ()

THIN X

|X | = 4g X

X1, X2, X3, X4 < − X

i ∈ [1,2,3,4]

Si THIN Xi

S = [S1, S2, S3, S4]

HALVE S

():

\\ return points by selecting one point
from each pair based on a threshold

Subroutine parallelizable!

HALVE X

X/2

Parallelism: changes

():

\\ return points by selecting one point from each pair
based on a threshold

Threshold adaptive based on previous rounds

HALVE X

X/2

Parallelism: changes

():

\\ return points by selecting one point from each pair
based on a threshold

Threshold adaptive based on previous rounds

Simpler, faster threshold

HALVE X

X/2

Takeaways

• Bake empirical observations into assumptions (rank-r data)

• Provide guarantees for practical algorithms

• Make hardware-aware algorithms (parallelizable)

• Adapt algorithms if needed!

Bonus

