Ffficient Attention

Lessons for theory-driven algorithm design

CS in two questions

1. Can we compute it?

ChatGPT

2. How fast?

-—

8L RN ES

CS in two questions

1. Can we compute it?

ChatGPT

2. How fast?

This talk

| ow-rank Thinning
With Lester Mackey, Albert Gong, Abhishek Shetty & Raaz Dwived,

Attention approximation

* Attention: runtime quadratic in sequence length

Attention approximation

* Attention: runtime quadratic in sequence length

* Method: perform partial attention computation

Attention approximation

* Attention: runtime quadratic in sequence length
* Method: perform partial attention computation

* Goals: low error (similar quality to full attention) and fast

Thinformer

d
Exact attention ®(n°d)
.
. :

Thinformer O(nn,, d)

Thinformer

Attention(Q, K,V & R™>4) = D71AV where

A = exp(QKT/\/d) D = diag(4l,)

Thinformer

Attention(Q, K,V & R™>4) = D71AV where

A = exp(QKT/\/d) D = diag(4l,)

Thinformer(Q, K,V & R4

K, V <-THIN(K, V) // subselect n_, . points

Then D™1AV, where ‘

A = eXp(QKT/\/ZI) (Dwivedi and Mackey'21, 22, Shetty-Dwivedi-Mackey '22)**

** a few changes

Part 1: error guarantees

Approximate matrix multiplication

A, B e R**4

(AB")ij = (Ai,Bj) = 3y AueBy; = 3002 AuBy;

How do we select n,,, points?

out

Problem setup: thinning 1-d

Data points X = x5 ...,x,] € R”

Problem setup: thinning 1-d

Data points X = x5 ...,x,] € R”

Goal: Select n,,,, points “representative” of X

How do we measure? Difference in means

Problem setup: thinning 1-d

Data points X = x5 ...,x,] € R”

Goal: Select n,,,, points “representative” of X

How do we measure? Difference in means

p=I[l/n,...1Inl€R"q=1[0,1/n, ,1/n,0,...0] € R"

our’

= [x] —E [x] = X"p — X"q

Guarantees: 1-d case

Assume from our thinning algorithm X'p — X’q is sub-Gaussian: (Dwivedi and Mackey ‘21, 22)
2.2
- [exp(t(XTp — XTq))] < exp - (e>01>0)
2(1 — €)?

Guarantees: 1-d case

Assume from our thinning algorithm X'p — X’q is sub-Gaussian: (Dwivedi and Mackey ‘21, 22)
2.2
- [exp(t(XTp — XTq))] < exp - (e>01>0)
2(1 — €)?

[exp(AX'p — X' q))]
exp(A?)

P(X'p-X'qg >1) <

Guarantees: 1-d case

Assume from our thinning algorithm X'p — X’q is sub-Gaussian: (Dwivedi and Mackey ‘21, 22)
2.2
- [exp(t(XTp — XTq))] < exp - (e>01>0)
2(1 — €)?

[exp(AX'p — X' q))]
exp(A?)

P(X'p-X'qg >1) <

With prob 1 — ¢, Q
X'p-X'g <...

Problem setup: thinning high-dimensional

Data points X = X, ..., x| € R

Problem setup: thinning high-dimensional

Data points X = X, ..., x| € R

Goal: Select n,,,, points “representative” of X

How do we measure? Difference in means

Problem setup: thinning high-dimensional

Data points X = X, ..., x| € R

Goal: Select n,,,, points “representative” of X

How do we measure? Difference in means

p=I[l/n,...1Inl€R"q=1[0,1/n, ,1/n,0,...,0] € R"

our’

-p[x] = B lx] = X'p - X'q € R

IX"p — X"ql

Guarantees: high-d
: [exp (z | x7p - x7q | 2)]

Guarantees: high-d

1
<E |exp]| t- max (u,X'p — X!q)
1 — & ME%g,d

[
- [max exp ((u, X'p — XQ]))]
UEG, 4 1 —¢

- [exp (t ” X'p—X'g ” 2)

Guarantees: high-d

: [exp (z | XTp—XTq | 2)

S_

1
Mm I
mG@M —
| M >
KPP
2 M
o)
VR

Guarantees: high-d
. [exp (z | XTp—xTq | 2)] leXp [—e Igéxdm e XTCD)]

max exp <ll, X'p - XT‘]>>]
UEE, 4 -

IN

IA

d
ezg;d _ [eXP(l t A XTP_XTC]H 9.d] < <1+%)

1 X'p — X'qll, <d+log(...) 8

Guarantees: rank-r

1 X'p — X'q|l, = MMDy(p,q) K = XX" (linear kernel)

max-mean discrepancy

Guarantees: rank-r

1 X'p — X'q|l, = MMDy(p,q) K = XX" (linear kernel)

max-mean discrepancy

Definition (informal) K: any symmetric PS
THIN is K-sub-Gaussian if:

_ _ 2
- |exp ((u, K(p — q))) < exp (U—uTKu) Vu e R”.

2

D matrix

Guarantees: rank-r

Assume data is low-rank

It THIN is K-sub-Gaussian (def), assuming K is rank r with prob 1 — 6 — &/,

+ A : :
b Hout Ain

MMD%{(pina (Iout) < 1/2

1
7.4r 4+ 2.8 1log (5)

Guarantees: rank-r

It THIN is K-sub-Gaussian (def), assuming K is rank r with prob 1 — 6 — ¢/,

+ A : :
ah Hout Ain

MMD%{(pina (Iout) < 1/2

1
7.4r + 2.8 log (g)

Guarantees: rank-r

It THIN is K-sub-Gaussian (def), assuming K is rank r with prob 1 — 6 — ¢/,

+ A : :
h Nout Mn

MMDy/(pin, dout) < v°

1
7.4r + 2.8 1log (E)

Rank r term

Guarantees: rank-r

It THIN is K-sub-Gaussian (def), assuming K is rank r with prob 1 — 6 — ¢/,

1 1 1
7.4r + 2.8 1og (—,) + A4 — —
0 Nout Min

Rank r term Residual term

MMD%{(pina (lout) < 1/2

Part II: speed results

Results

ViT on Imagenet, replacing two layers at inference

Attention Algorithm Top-1 Accuracy (%)

Layer 1 Runtime (ms)

Layer 2 Runtime (ms)

Exact
Performer
Reformer

KDEformer
Scatterbrain
Thinformer (Ours)

82.55 £ 0.00
80.56 + 0.30
81.47 £ 0.06
82.00 = 0.07
82.05 = 0.08
82.18 £ 0.05

18.48 £0.12
2.54 £ 0.01
7.84 £ 0.03
5.39 £0.03
6.86 + 0.02
2.06 £ 0.01

1.40 £ 0.01
0.60 = 0.01
1.53 £ 0.01
2.28 £0.03
1.55 £ 0.03
0.54 £ 0.00

Haraware lessons

* Moving data >> performing GPU computations

e Matrix multiplication << other operations @“nAW_(L
(09
* Non-parallel and element wise operations: slow

O A
O H H B

000 »

- H H [

M@,mor‘y C,OW)-P"j@

(DRAM) (SRAM +Compete)

(Horace He, blog post)

Efficiency hacks

Load tensors onto device when initialized (moving data)
Fuse elementwise operations using torch.compile() (element wise operations are slow)
Only copy data when necessary (repeat() vs view()) (initializing/moving data)

"Vectorise” any operation (matmuls are efficient)

Parallelism: what works

THIN(X): HALVE(X):

t X =4%return X \\ return X/2 points by selecting one point

o | from each pair based on a threshold
1. X{, X5, X5, Xy < — X // divide input into 4

2.For X_iie[l1,2,3.4]:

S, <- THIN(X) Subroutine parallelizable! Q

3.8 =15, 9,5, 55,941 // concatenate

4. return HALVE(S)

Parallelism: changes

HALVE(X):

\\ return X/2 points by selecting one point from each pair
based on a threshold

Threshold adaptive based on previous rounds

Parallelism: changes

HALVE(X):

\\ return X/2 points by selecting one point from each pair
based on a threshold

hreshold

Simpler, faster threshold Q

Takeaways

e Bake empirical observations into assumptions (rank-r data)
* Provide guarantees for practical algorithms
 Make hardware-aware algorithms (parallelizable)

e Adapt algorithms it needed!

Bonus

For any indices T C |n|, we further define the kernel max

seminorm (KMS)

K (pin — Pour) 7 = maxiez e K(pin — Pou)|-

(2)

Theorem 1 (Low-rank sub-Gaussian thinning). Fix any
6’ € (0,1), r <m,and T C |n|. If ALG € G, s(K), then
the following bounds hold individually with probability at
least1 —6/2 —6':

MMD%{(pinapout) S VZ [62,r T € lOg(%)]
+Mp1(e — o) and (3)

Nout Nin

IK Py — Pow)llz < vDry/210g(22)). @)

Here, \; denotes the j-th largest eigenvalue of K, A, 11 =
0, and D1 = max;c7 VK.

Suppose that, in addition, X C R® and |K; — Kji| <
Lk|lx; — xj||2 for some Lx > 0 and all i,j € Z and
| € supp(p,,). Then, with probability at least 1 —§ /2 — ¢,

IK Py, — Pow) Iz < vDry/2108(4/5)(1 + 22)

+ v D7z 32 \/ 2 rank(Xz) log(D%‘f %’ILL‘—;)) 5)

for Rt = max;ez ||x;||2 and X1 = [z; ,L.TGI.

