Ffficient Attention

Lessons for theory-driven algorithm design
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| ow-rank Thinning
With Lester Mackey, Albert Gong, Abhishek Shetty & Raaz Dwived,
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Attention approximation

* Attention: runtime quadratic in sequence length
* Method: perform partial attention computation

* Goals: low error (similar quality to full attention) and fast



Thinformer

d
Exact attention ®(n°d)
.
. :

Thinformer O(nn,, d)



Thinformer

Attention(Q, K,V & R™>4) = D71AV where

A = exp(QKT/\/d) D = diag(4l,)



Thinformer

Attention(Q, K,V & R™>4) = D71AV where

A = exp(QKT/\/d) D = diag(4l,)

Thinformer(Q, K,V & R4

K, V <-THIN(K, V) // subselect n_, . points

Then D™1AV, where ‘

A = eXp(QKT/\/ZI) (Dwivedi and Mackey'21, 22, Shetty-Dwivedi-Mackey '22)**

** a few changes



Part 1: error guarantees



Approximate matrix multiplication

A, B e R**4

(AB")ij = (Ai,Bj) = 3y AueBy; = 3002 AuBy;

How do we select n,,, points?

out



Problem setup: thinning 1-d

Data points X = x5 ...,x,] € R”
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Problem setup: thinning 1-d

Data points X = x5 ...,x,] € R”

Goal: Select n,,,, points “representative” of X

How do we measure? Difference in means

p=I[l/n,...1Inl€R"q=1[0,1/n, ,1/n,0,...0] € R"

our’

= [x] —E [x] = X"p — X"q



Guarantees: 1-d case

Assume from our thinning algorithm X'p — X’q is sub-Gaussian: (Dwivedi and Mackey ‘21, 22)
2.2
- [exp(t(XTp — XTq))] < exp - (e>01>0)
2(1 — €)?
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Guarantees: 1-d case

Assume from our thinning algorithm X'p — X’q is sub-Gaussian: (Dwivedi and Mackey ‘21, 22)
2.2
- [exp(t(XTp — XTq))] < exp - (e>01>0)
2(1 — €)?

[exp(AX'p — X' q))]
exp(A?)

P( X'p-X'qg >1) <

With prob 1 — ¢, Q
X'p-X'g <...



Problem setup: thinning high-dimensional

Data points X = X, ..., x| € R
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Problem setup: thinning high-dimensional

Data points X = X, ..., x| € R

Goal: Select n,,,, points “representative” of X

How do we measure? Difference in means

p=I[l/n,...1Inl€R"q=1[0,1/n, ,1/n,0,...,0] € R"

our’

-p[x] = B lx] = X'p - X'q € R

IX"p — X"ql



Guarantees: high-d
: [exp (z | x7p - x7q | 2)]




Guarantees: high-d

1
<E |exp]| t- max (u,X'p — X!q)
1 — & ME%g,d

[
- [ max exp ( (u, X'p — XQ]))]
UEG, 4 1 —¢

- [exp (t ” X'p—X'g ” 2)




Guarantees: high-d

: [exp (z | XTp—XTq | 2)
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Guarantees: high-d
. [exp (z | XTp—xTq | 2)] leXp [ —e Igéxdm e XTCD)]

max exp <ll, X'p - XT‘]>>]
UEE, 4 -

IN

IA

d
ezg;d _ [eXP(l t A XTP_XTC]H 9.d] < <1+%)

1 X'p — X'qll, <d+log(...) 8



Guarantees: rank-r

1 X'p — X'q|l, = MMDy(p,q) K = XX" (linear kernel)
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Guarantees: rank-r

1 X'p — X'q|l, = MMDy(p,q) K = XX" (linear kernel)

max-mean discrepancy

Definition (informal) K: any symmetric PS
THIN is K-sub-Gaussian if:

_ _ 2
- |exp ((u, K(p — q))) < exp (U—uTKu) Vu e R”.

2

D matrix



Guarantees: rank-r

Assume data is low-rank

It THIN is K-sub-Gaussian (def), assuming K is rank r with prob 1 — 6 — &/,

+ A : :
b Hout Ain

MMD%{(pina (Iout) < 1/2

1
7.4r 4+ 2.8 1log (5)



Guarantees: rank-r

It THIN is K-sub-Gaussian (def), assuming K is rank r with prob 1 — 6 — ¢/,

+ A : :
ah Hout Ain

MMD%{(pina (Iout) < 1/2

1
7.4r + 2.8 log (g)



Guarantees: rank-r

It THIN is K-sub-Gaussian (def), assuming K is rank r with prob 1 — 6 — ¢/,

+ A : :
h Nout Mn

MMDy/(pin, dout) < v°

1
7.4r + 2.8 1log (E)

Rank r term




Guarantees: rank-r

It THIN is K-sub-Gaussian (def), assuming K is rank r with prob 1 — 6 — ¢/,

1 1 1
7.4r + 2.8 1og (—,) + A4 — —
0 Nout  Min

Rank r term Residual term

MMD%{(pina (lout) < 1/2




Part II: speed results



Results

ViT on Imagenet, replacing two layers at inference

Attention Algorithm Top-1 Accuracy (%)

Layer 1 Runtime (ms)

Layer 2 Runtime (ms)

Exact
Performer
Reformer

KDEformer
Scatterbrain
Thinformer (Ours)

82.55 £ 0.00
80.56 + 0.30
81.47 £ 0.06
82.00 = 0.07
82.05 = 0.08
82.18 £ 0.05

18.48 £0.12
2.54 £ 0.01
7.84 £ 0.03
5.39 £0.03
6.86 + 0.02
2.06 £ 0.01

1.40 £ 0.01
0.60 = 0.01
1.53 £ 0.01
2.28 £0.03
1.55 £ 0.03
0.54 £ 0.00




Haraware lessons

* Moving data >> performing GPU computations

e Matrix multiplication << other operations @“nAW_(L
(09
* Non-parallel and element wise operations: slow
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(DRAM) (SRAM +Compete)

(Horace He, blog post)



Efficiency hacks

Load tensors onto device when initialized (moving data)
Fuse elementwise operations using torch.compile() (element wise operations are slow)
Only copy data when necessary (repeat() vs view()) (initializing/moving data)

"Vectorise” any operation (matmuls are efficient)



Parallelism: what works

THIN(X): HALVE(X):

t X =4%return X \\ return X/2 points by selecting one point

o | from each pair based on a threshold
1. X{, X5, X5, Xy < — X // divide input into 4

2.For X_iie[l1,2,3.4]:

S, <- THIN(X) Subroutine parallelizable! Q

3.8 =15, 9,5, 55,941 // concatenate

4. return HALVE(S)



Parallelism: changes

HALVE(X):

\\ return X/2 points by selecting one point from each pair
based on a threshold

Threshold adaptive based on previous rounds



Parallelism: changes

HALVE(X):

\\ return X/2 points by selecting one point from each pair
based on a threshold

hreshold

Simpler, faster threshold Q




Takeaways

e Bake empirical observations into assumptions (rank-r data)
* Provide guarantees for practical algorithms
 Make hardware-aware algorithms (parallelizable)

e Adapt algorithms it needed!



Bonus

For any indices T C |n|, we further define the kernel max

seminorm (KMS)

K (pin — Pour) 7 = maxiez e K(pin — Pou)|-

(2)

Theorem 1 (Low-rank sub-Gaussian thinning). Fix any
6’ € (0,1), r <m,and T C |n|. If ALG € G, s(K), then
the following bounds hold individually with probability at
least1 —6/2 —6':

MMD%{(pinapout) S VZ [62,r T € lOg(%)]
+Mp1(e — o) and (3)

Nout Nin

IK Py — Pow)llz < vDry/210g(22)). @)

Here, \; denotes the j-th largest eigenvalue of K, A, 11 =
0, and D1 = max;c7 VK.

Suppose that, in addition, X C R® and |K; — Kji| <
Lk|lx; — xj||2 for some Lx > 0 and all i,j € Z and
| € supp(p,,). Then, with probability at least 1 —§ /2 — ¢,

IK Py, — Pow) Iz < vDry/2108(4/5)(1 + 22)

+ v D7z 32 \/ 2 rank(Xz) log( D%‘f %’ILL‘—;)) 5)

for Rt = max;ez ||x;||2 and X1 = [z; ,L.TGI.



