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Specific ML class of problems: Partly-Decoupled Federated
Low-Rank Matrix Learning

We developed Byzantine-resilient algorithm for a specific class of machine
learning problems: Partly-Decoupled Federated Low-Rank Matrix
Learning.
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Problem Setting

Learn a low rank r ≪ n, q matrix X∗ ∈ ℜn×q from measurements of the
form

yk := Akx
∗
k , k ∈ [q].

The matrix Ak is defined differently for each problem:

• For Low Rank Matrix Completion (LRMC) problem it is a
diagonal 1-0 matrix.

• For Low Rank Columnwise Compressive Sensing (LRCS)
problem it is a random Gaussian matrix. This problem is also referred
to as multi-task representation learning or few-shot learning.

• For Low Rank Phase Retrieval (LRPR) problem it is a random
Gaussian matrix, but only the magnitudes of the measurements are
observed i.e., zk = |yk |.

• Initialization: All these problems require initialization, which
reduces to a subspace estimation or PCA problem.
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Vertical Federation

yk = Akx
∗
k , k ∈ [q]

[x∗1 , x
∗
2 , ..., x

∗
q] = X∗ = U∗B∗ = U∗[b∗1 ,b

∗
2 , ...,b

∗
q]

Each node ℓ ∈ [L] observes a subset of columns k ∈ Sℓ ⊂ [q],
|Sℓ| = q̃ < q.

Solving this problem requires solving

min
U∈ℜn×r

B∈ℜr×q

f (U,B) = min
U∈ℜn×r

B∈ℜr×q

q∑
k=1

∥yk − AkUbk∥2 (1)
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Theorem (Subspace-Median)

Subspace-Median Algorithm1

For a τ < 0.4, suppose that, for at least (1− τ)L
Uℓ’s

Pr (SDF (U
∗,Uℓ) ≤ δ) ≥ 1− p

then, with probability at least
1− exp(−Lψ(0.4− τ, p)),

SDF (U
∗,Uout) ≤ 23δ.

1Singh & Vaswani, Byzantine-resilient federated pca and low rank column-wise
sensing, IEEE TIT, 2024
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Challenges in GD part
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Challenges: Non Identical data

Since

E[∇ℓ(Ut−1,Bℓ)] = m(Xℓ − X∗
ℓ)Bℓ

⊤ = m(UBℓ −U∗B∗
ℓ)Bℓ

⊤

Therefore,
E[∇ℓ(Ut−1,Bℓ)] ̸= E[∇ℓ′(Ut−1,Bℓ′)]

7 / 16



Bounded heterogeneity Assumption

max
ℓ,ℓ′∈[L]

∥B∗
ℓ − B∗

ℓ′∥
2
F ≤ G 2

Bσ
∗2
max

This assumption in turn implies that, for all ℓ, ℓ′ ∈ [L],

∥X∗
ℓ − X∗

ℓ′∥2F = ∥U∗B∗
ℓ −U∗B∗

ℓ′∥
2
F ≤ G 2

Bσ
∗2
max

All past work for heterogeneous setting assumes a bound on the
difference between gradients from different good nodes, at each
algorithm iteration [Assumption 2]2, [Assumption 1]3.

Using this assumption we can bound the additional term. And the
convergence result depends on this heterogeneity factor.

2Data & Diggavi, Byzantine-resilient high-dimensional federated learning, IEEE
TIT, 2023

3Allouah et al., Fixing by mixing: A recipe for optimal byzantine ml under
heterogeneity, AISTATS, 2023
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Challenges: Incoherence of U∗

Incoherence of U∗: LRcCS/LRPR problem, does not require incoherence
of U∗. In LRMC, we need to ensure incoherence of U at every iteration.
This is hard because U is updated using possibly non-incoherent gradients
from GM or Krum. To handle this, we introduce a filtering step.

9 / 16



Algorithm 1 Byz-AltGDmin-LRMC

1: AltGDmin Initialization:
2: Nodes ℓ = 1, ..., L
3: Calculate and Push U0ℓ to center
4: Central Server
5: Define set I0 = {}
6: for ℓ = 1 to L do
7: if ∥uj0ℓ∥ ≤ 1.5µ

√
r
n for all j ∈ [n] then

8: Add ℓ to set I0
9: end for

10: U0 ←− Byz− SubspaceEstimation{U0ℓ}ℓ∈I0

11: Push U0 to nodes.
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Algorithm 2 Byz-AltGDmin-LRMC

1: AltGDmin Iterations:
2: for t = 1 to T do
3: Nodes ℓ = 1, ..., L
4: Calculate and Push ∇ℓ to center
5: Central Server
6: Define set It = {}
7: for ℓ = 1 to L do
8: Compute Utemp ← Ut−1 − η∇ℓ

9: if ∥uj
temp∥ ≤ (1− 0.4

κ̃2 )∥uj
t−1∥+ 1.4µ

√
r
n
for all j ∈ [n] then

10: Add ℓ to set It
11: end for
12: ∇Kr/GM = Krum/GM{∇ℓ}ℓ∈It

13: Compute Ut ← QR(Ut−1 − η∇Kr/GM)
14: Push Ut to nodes.
15: end for
16: Output UT .
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Byzantine-resilient Vertically federated LRMC

Bounded heterogeneity: maxℓ,ℓ′∈[L] ∥B∗
ℓ − B∗

ℓ′∥
2
F ≤ G 2

Bσ
∗2
max

Theorem
(Byz-Fed-AltGDmin-Learn: Complete guarantee) Assume RSV

incoherence, Bounded heterogeneity Assumption holds, and
Lbyz

L < 0.4. If

nq̃p ≥ C κ̃10µ2q̃r2 log q̃ log

(
1

ϵ

)
then, w.h.p. after T = C κ̃2 log

(
1
ϵ

)
iterations,

SDF (U
∗,UT ) ≤ max(ϵ, 14C κ̃2GB)
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Experiments
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(a) LRMC with n = 1000, q = 500,
r = 3, L = 20, and Lbyz = 8.
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(b) LRCS with n = 1000, m = 50,
q = 1000, r = 3, L = 20, and Lbyz = 8.

Figure 1: We compare Krum-AltGDmin, GM-AltGDmin, and
CWMedian-AltGDmin for the different problems under the Reverse Gradient
Attack.
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Figure 2: Heterogeneity Effect: SDF (Ut ,U
∗) vs Iteration t with n = 200,

q = 1000, r = 4,L = 10, Lbyz = 2, p = 0.4, Reverse Gradient Attack and using
Krum
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Comparison

Methods→ Krum GM CWMed

Sample Comp for Byz-AltGDmin r2q̃ log q̃ log( 1ϵ ) r2q̃ log q̃ log( 1ϵ ) r q̃
√
n log q̃ log nr log( 1ϵ )

(lower bound on nq̃p)
Communic Cost nr log( 1ϵ ) nr log( 1ϵ ) nr log( 1ϵ )
Approximate Algorithm No Yes No

Compute Cost at Center - GD nr2L2 log( 1ϵ ) nr2L log3( L
ϵapprox

) log( 1ϵ ) nr2L log(L) log( 1ϵ )

Compute Cost at Node - GD max(n, |Ω|
L )r2 log( 1ϵ ) max(n, |Ω|

L )r2 log( 1ϵ ) max(n, |Ω|
L )r2 log( 1ϵ )

Ω is set of observed entries, E[|Ω|] = npq

Table 1: We compare Krum, Geometric Median (GM), and Coordinate wise
median (CWMed) based modification of AltGDmin. Observe that Compute
cost for CWMed is smallest but its sample complexity is unreasonably high
making it useless. Krum and GM have same sample complexity. GM compute
cost is slightly less than Krum but it is an approximate algorithm i.e., we can
compute GM with ϵapprox error.
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Thank You!
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