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Specific ML class of problems: Partly-Decoupled Federated
Low-Rank Matrix Learning

We developed Byzantine-resilient algorithm for a specific class of machine
learning problems: Partly-Decoupled Federated Low-Rank Matrix
Learning.

2/16



Problem Setting

Learn a low rank r < n, g matrix X* € R"*9 from measurements of the
form
Yk == Akxi, ke [q]
The matrix Ay is defined differently for each problem:
® For Low Rank Matrix Completion (LRMC) problem it is a
diagonal 1-0 matrix.

® For Low Rank Columnwise Compressive Sensing (LRCS)
problem it is a random Gaussian matrix. This problem is also referred
to as multi-task representation learning or few-shot learning.

® For Low Rank Phase Retrieval (LRPR) problem it is a random
Gaussian matrix, but only the magnitudes of the measurements are
observed i.e., zx = |y|.

¢ [nitialization: All these problems require initialization, which
reduces to a subspace estimation or PCA problem.
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Vertical Federation

Yk = Arx, k € [q]
X, %5, .o x5 = X* = U"B* = U*[b}, b, ..., b’]
Each node ¢ € [L] observes a subset of columns k € S; C [q],
ISl =q<gq.

Solving this problem requires solving

min f(U, B) m|n ZHyk—AkUka (1)
UE%"X’ k 1
BeR™™9 BE?Rrxq
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Theorem (Subspace-Median)

Subspace-Median Algorithm!
For a 7 < 0.4, suppose that, for at least (1 — 7)L
Ug’S

Pr(SDr(U",Uy) <) >1—p

then, with probability at least
1 —exp(—Ly(0.4 — T, p)),

SD£(U*, Uyy) < 236.

1Singh & Vaswani, Byzantine-resilient federated pca and low rank column-wise
sensing, IEEE TIT, 2024
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Challenges in GD part
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Challenges: Non ldentical data

Since
E[V,(U:_1,B;)] = m(X;, — X*()B," = m(UB, — U*B*,)B, "

Therefore,
E[V¢(U¢-1,B)] # E[Vy(Ue—1,Bp)]
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Bounded heterogeneity Assumption

* * (12 2 %2
prgﬁ] HB/ - BZ’”F S GBUmax

This assumption in turn implies that, for all ¢,¢" € [L],

IX*, — X*¢ |z = |U*B} — U*B} || < GRoy2

max

All past work for heterogeneous setting assumes a bound on the
difference between gradients from different good nodes, at each
algorithm iteration [Assumption 2]2, [Assumption 1]3.

Using this assumption we can bound the additional term. And the
convergence result depends on this heterogeneity factor.

2Data & Diggavi, Byzantine-resilient high-dimensional federated learning, IEEE
TIT, 2023

3Allouah et al., Fixing by mixing: A recipe for optimal byzantine ml under
heterogeneity, AISTATS, 2023
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Challenges: Incoherence of U*

Incoherence of U*: LRcCS/LRPR problem, does not require incoherence
of U*. In LRMC, we need to ensure incoherence of U at every iteration.
This is hard because U is updated using possibly non-incoherent gradients
from GM or Krum. To handle this, we introduce a filtering step.
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Algorithm 1 Byz-AltGDmin-LRMC

=
= O

LN REODMMRH

AltGDmin Initialization:
Nodes / =1, ...,L
Calculate and Push Uy, to center
Central Server
Define set Zp = {}
for { =1to L do
if |lup, |l < 1.54./Z for all j € [n] then
Add 7/ to set I
end for
Uy «— Byz — SubspaceEstimation{Ug¢}scz,
Push Ug to nodes.
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Algorithm 2 Byz-AltGDmin-LRMC

1: AltGDmin Iterations:
2. fort=1to T do
33 Nodes/=1,..,L
Calculate and Push V, to center
Central Server
Define set Z; = {}
for /=1to L do
Compute Uiemp +— U1 — Vg
if ||u{e,,,p\| <(1- %)HU';AH + 1.4p,/T for all j € [n] then
10: Add / to set Z;
11:  end for
12: VKr/GM = Krum/GM{Vg}gezt
13:  Compute U; <~ QR(U:—1 — nVkr/6m)
14:  Push U; to nodes.
15: end for
16: Qutput Ur.

© PN
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Byzantine-resilient Vertically federated LRMC

Bounded heterogeneity: max; ;<] |B} — B} |2 < G372

B%max

Theorem
(Byz-Fed-AltGDmin-Learn: Complete guarantee) Assume RSV
incoherence, Bounded heterogeneity Assumption holds, and LLL” <04 If

1
ngp > Ciu2gr? |ogq|og< )

then, w.h.p. after T = C&?log (%) iterations,

SDF(U*,U7) < max(e, 14CA2Gg)
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Experiments

Subspace Error vs Time Subspace Error vs Time
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(a) LRMC with n = 1000, g = 500, (b) LRCS with n = 1000, m = 50,
r=3,L=20, and Ly, = 8. q =1000, r =3, L =20, and L}, = 8.

Figure 1: We compare Krum-AltGDmin, GM-AItGDmin, and
CWMedian-AltGDmin for the different problems under the Reverse Gradient
Attack.
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Figure 2: Heterogeneity Effect: SDg(U;, U™) vs lteration t with n = 200,
q = 1000, r = 4,L =10, Ly, =2, p = 0.4, Reverse Gradient Attack and using

Krum
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Comparison

Methods— Krum GM CWMed

Sample Comp for Byz-AltGDmin r’glog Elog(%) r’glog alog(%) rqy/nlogqlognr Iog(%)
(lower bound on ngp)

Communic Cost nrlog(L) nrlog(L) nrlog(L)

Approximate Algorithm No Yes No

Compute Cost at Center - GD

nr2[%log(L)

nr?Llog (%) log(1)

€approx

nr2Llog(L) log(L)

Compute Cost at Node - GD
Q is set of observed entries, E[|2]] = npq

max(n, 5)r? og (1)

max(n, %)r2 log(2)

max(n, 5)r? log()

Table 1: We compare Krum, Geometric Median (GM), and Coordinate wise
median (CWMed) based modification of AltGDmin. Observe that Compute
cost for CWMed is smallest but its sample complexity is unreasonably high

making it useless. Krum and GM have same sample complexity. GM compute
cost is slightly less than Krum but it is an approximate algorithm i.e., we can

compute GM with €approx error.
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Thank You!
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