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 LLMs face significant challenges when deployed in real-world environments with

dynamic and diverse data distributions.

⚫ Vertical Domain Shift: This occurs when test data contains domain-specific terminology, such as in

medical, legal, or technical fields, which the model was not explicitly trained on, impairing its

performance.

⚫ Distributional Shift in Non-Specific Domains: Variations in user intent and linguistic diversity,

including dialects and slang, lead to distributional discrepancies that negatively affect the model's

comprehension and response generation.



Background
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 Some advanced techniques to adapt trained models to potentially shifted test

domains.



Motivation
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 Recent attempts like finetuning, RAG, TTA, and TTT

have the following limitations:

⚫ Difficulty in acquiring labeled data

⚫ Neglecting autoregressive dependencies

⚫ High training overhead with catastrophic forgetting.

Dynamically adapts LLMs using only unlabeled test data.

 Perplexity minimization improves the performance of LLMs.

⚫ A lower perplexity indicates that the model's predictions

are more confident and closely align with the true

distribution of the data, which implies better model fitting.

For a given question-answer pair {x,y},

minimizing the perplexity of the model's

response y can enhance the model's ability

to fit the target data distribution.
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Test-Time Learning for LLMs (TLM)

 Observation 1: Trend of LLM’s perplexity to the input P(x; Θ) and perplexity 

to the output P(y|x; Θ) is the same.

 Observation 2: High-perplexity samples contribute more to LLM updates 

than low-perplexity ones

⚫ This indicates that reducing output perplexity is possible by minimizing input perplexity in LLMs.

⚫ training the test samples with high-perplexity makes more contribution than low-perplexity ones

⚫ training on test samples with very low-perplexity may hurt performance.



Test-Time Learning for LLMs (TLM)
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⚫ Input Perplexity Minimization Objective: Inspired by the strong correlation between input perplexity and output 

perplexity, we adopt input perplexity minimization as the optimization objective. 

⚫ Sample-Efficient Learning Strategy: Not all test samples equally impact model updates. Employing a perplexity 

based weighting scheme, the model actively selects and emphasizes high-perplexity test samples for 

backpropagation, thereby enabling efficient parameter updates during Test-Time Learning. 

⚫ Lightweight Parameter Updates via LoRA: To mitigate catastrophic forgetting and reduce computational costs, we 

integrate LoRA into TTL. 



A gradient-based theoretical analysis

Let 𝛩′ = 𝛩 − 𝜂∇𝛩 −log𝑃 𝑥;𝛩 denote the updated parameters after a single TTL step. Using a first-order Taylor 

expansion:

log𝑃𝛩′ 𝑦|𝑥 ≈ 𝒪 𝜂2 + log𝑃𝛩 𝑦|𝑥 + 𝜂 ∇𝛩log𝑃 𝑥; 𝛩 ⊤∇𝛩log𝑃𝛩 𝑦|𝑥
⏟

Cross−gradient term

,

where 𝑦 is the answer to the question 𝑥. Our core assumption is that ⟨∇𝑥, ∇𝑦⟩ = ∇𝛩log𝑃 𝑥; 𝜃 ⊤∇𝛩log𝑃𝛩 𝑦|𝑥 ≥ 0

for question-answer pairs with strong semantic alignment. Under this condition, the cross-gradient term becomes non-

negative, guaranteeing: log𝑃𝛩′ 𝑦|𝑥 ≥ log𝑃𝛩 𝑦|𝑥 for small 𝜂.

◼ Assumption 1 (Autoregressive Property): The LLM generates each token 𝑦𝑡 based on the input 𝑥 and previously 

generated tokens 𝑦1:𝑡−1: 𝒫 𝑦𝑡|𝑥, 𝑦1:𝑡−1; 𝛩 . The standard next-token prediction objective makes model predictions 

inherently conditional on previous context quality.

◼ Assumption 2 (Shared Parameter Influence): LLM parameters 𝛩 influence both the input perplexity 𝒫 𝑥; 𝛩 and 

the conditional output perplexity 𝒫 𝑦|𝑥; 𝛩 . This assumption is valid across various LLM architectures, such as 

encoder-only and decoder-only models.



Contents

Background01

Test-Time Learning for LLMs

Conclusion

02

04

Experimental Results03



Comparison Experiments

 We compare our proposed TLM, the original LLM, Tent, EATA, and COME to demonstrate the

superior performance of our method. We conduct experiments on different types of datasets,

including DomainBench, InstructionBench, and ReasoningBench.



Effects of different perplexity margins
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To explore the optimal threshold for 𝒫0, we conduct experiments with values of 𝒫0 set to 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6 .

When 𝒫0 = 𝑒3, our method achieves the best performance on three datasets, namely Geography, Medicine, and 

Finance, while also showing near-optimal performance on the Agriculture dataset. Therefore, we select 𝒫0= 𝑒3 for 

all experiments. When 𝒫0 is set too high or too low, it negatively affects performance.

𝑆 𝑥 = 𝜆 ⋅ 𝑒 log 𝒫 𝑥;Θ −log 𝒫0 ⋅ 𝐈 𝒫 𝑥;Θ >𝒫0 𝑥
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Conclusion
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 A novel Test-Time Learning method TLM. Aims to adapt LLMs efficiently using only unlabeled

test data, enhancing robustness in target domains.

 Input Perplexity Minimization. Reducing output perplexity can be achieved by minimizing the

input perplexity of unlabeled test data.

 Sample-Efficient Learning Strategy. High-perplexity test samples are more informative for model

updates than low-perplexity ones.

 Lightweight Adaptation via LoRA. LoRA is more effective than full parameter updates in

mitigating catastrophic forgetting.

Code is available at https://github.com/Fhujinwu/TLM



Thank you for your attention!


