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Dependence testing

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?
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A large animal who slings slobber,
exudes a distinctive houndy odor,
and wants nothing more than to
follow his nose.

Their noses guide them
through life, and they're
never happier than when
following an interesting scent.

A responsive, interactive
pet, one that will blow in
your ear and follow you
everywhere.

Preliminary

Hilbert-Schmidt Independence Criterion
IZxy 3s = Brxy [(¥x — p1x) @ (py — py)]ll3s-

where ux = Ep, [{(X)], py = Ep, [¢(Y)]
MMD

Hypothesis Testing

p-value: the probability of obtaining results as
extreme as, or more extreme than, the observed
results, assuming the null hypothesis 1s true.

p-value < : reject.

p-value > : fail to reject.

[Credit to Arthur Gretton]



A Motivating Example

X ~ U(=20,20),Y=s-¢* +¢,¢e ~ H(0,025),s € {—1,1} with equal probability.
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® p-value of HSIC with default settings on the whole sample 1s 0.1359 >0.05, fails to reject.

® Just a specific case, but it does reflect the shortcomings of HSIC 1n dealing with “extreme cases”.



Examples in Psychology

Time spent indulging 1n social media (t) Probability of depressive disorders (p)

bl | RED !
Only excessive usage (large t) 3 Probability of depressive ~/

But the percentage of people with excessive usage time 1s small, which makes 1t hard to detect
dependence between t and p.

Keles, B., McCrae, N., and Grealish, A. A systematic review: the influence of social media on depression, anxiety and psychological distress in adolescents.
International journal of adolescence and youth, 25(1):79-93, 2020.



Examples in Other Fields

Physics Anomaly detection

Original and adjusted series
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A Motivating Example

X ~ U(=20,20),Y=s-¢* +¢,¢ ~ N(0,0.25),s € {—1,1}with equal probability.

® p-value of HSIC with default settings on the whole sample 1s 0.1359 >0.03, fails to reject.

® p-value on the samples within the red rectangle is 6.8 * 10~ <0.05, reject.



Rare Dependence

® Definition L: The dependence patterns between two variables are significant
only within a small range of the entire distribution’s support.

® Goal @ : How to detect dependence even 1n the presence of rare dependence.

® Idea , : Automatically 1dentifies and amplifies the significantly dependent sub-
population to make the dependence pattern obvious and easier to detect.



Reweighting Function and Reweighted Distribution

® Idea . : Automatically identifies and amplifies the significantly dependent sub-
population to make the dependence pattern obvious and easier to detect.

° Change the original distribution! Resampling/Reweighting

~Pxy

® Reweighting function: & £ {,B . € — R2Y | [B(C)] = 1} . PIX,Y) = B(OPX,Y).

® C 1s areference variable that can be either X or Y.

® If X and Y are independent and C 1s either X or Y but not both, then X and Y are
still independent 1n the reweighted distribution of (X, Y) with weight g(C) .



Reweighted HSIC

®* Reweighting function: & £ {ﬁ .6 - R | Ep_ [B(C)] = 1} . PX,Y) = B(OPX,Y).

® Question: What 1s a good reweighting function for us?

® A possible criterion: maximize the dependence pattern in P(X, Y).

HSIC(X, Y) 2 [|IZxyll%s = IEp. [y — sx) ® (dy — )1l s

2

HSICﬂ(X, Y) = [ [(WX — Eplyx]) ® (¢y — "u’i[€by])] HS

= || Ep [y — EplBXy]) ® (dy — EplAX)by]))

HS



Reweighting Function and Reweighted Distribution

. 1 '
® Sample version: HSIC?(@) — —zTr [KXHﬂKYHﬁ ,
n _
1 .
® V-statistics: o
1,],q,F
'B SUT.S A) uv SUT.SU
HSICA) =2 D, 215 gy + s - 288100,

L,],q," (stuv)

Thegrem 3.4 (Null distribution).ﬂ Under Ho, we have Theorem 3.5. When HSIC? (X,Y) >0, HSIC? (D) con-
iliiqr = 0. In this case, HSICy (D) converges in dis- verges in distribution to a Gaussian according to:

tribution to a weighted sum of X? variables, i.e., J
NE: (HSICﬁ(@) — HSIC/(X, Y)) 4 (0,62,

B 4 N B .2
nHSICb(@)_)Z/IZ A1 o2 = 16(E(E;,h’ )* - HSIC/(X, Y)?)

I=1 14T ijqr



Reweighted HSIC

® Optimization Problem:

. , Jy &
arg min —log Ji' + 4 ol + — 2 (B=12
=1

s.t. . > 0, Zn:ﬁi = n,
=1

° BX) = (yt. @), where w 2 yla =) ay(x)’

0 T =1
Ha)ng =a Kya



Reweighted HSIC

Algorithm 1 Reweighted HSIC (RHSIC)

1: Input: D: samples. C: reference variable. a: signifi-
cance level. B: the number of permutations.

2: Output: p-value and test statistics value.

: Spllt D 1nto Dtr — {ZEtr, ytr} and Dte — {ZEte, yte}-

Optimize the constrained problem (9) on D;,., to obtain

the reweighting function 5(-).

. Use B = B (4¢) to calculate Tpps = HSICE (Dye).
: forallk € {1,...,B} do i
Permute y;. to get gfe and Dfe = Tt U gfe.
Calculate k-th statistics Ty = HSIC? (DE).
. end for
1 B
10: Compute p-value by p = = > .o, [[T}, > Top,] where
I denotes the indicator function.
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Generalization Guarantee

HSIC# (X, Y) — HSICA(X, Y) | _
= [HSICﬁ*(X, Y) — HSICﬁ*(@)] + [HSIC@*(@) — Hsmg(@)] + |HSIC(2) — HSIC/(X, Y)

— — —_—

A B ) C
< sup [HSICﬂ(X, y) — HSICﬁ(@)] L0+ [HSICﬁ(@) _ HSICA(x. Y)]
pedRs

.

N i ‘ C

It

<2 sup [HSIC/(X,Y) — HSIC/(D)
pedRs

~

A//

Theorem 3.7 (Uniform Bound) Suppose X C R? is a closed and bounded space and the values of the kernels kx and ky
are also bounded. Assume that the reweighting functions S € B are continuous and Lipschitz. Then with probability at least

1-9, we have
5 5 1 1 logn 1
sup HSICb(QZ) — HSICP(X, Y)| ~ O —log — + +—.

2
peRB n 0 n3 n3



Conditional Independence Version

_ { p:ExXZ >R |Ep [A(C.2)] = 1} . PX, Y| Z) = B(C,Z)P(X,Y | Z).
® Population version: J[f] = HZf( Y|ZH g = [( Vsiz ™ ['/fX|Z]) ® (¢Y|Z YlZ])]
where l//)ﬂqz =y — Eplyy | Z1. ¢Y|Z £ ¢y — Eply| Z].

. 1
® Sample version: JﬂCI = — Tr [Kf{ |ZK§I Z]
n?

K’ —RIKRID, K = RAK'RY
K, =RIKIR) D, K :=RIKIR)D,

b o |RP
R, = ¢ KD, + el

® Threshold estimation: conditional permutation [Runge, 2018].

Runge, J. Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information.
In International Conference on Artificial Intelligence and Statistics, pp. 938-947. PMLR, 2018.
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Causal Discovery in the Presence of Rare Dependence

Assumption B.1. VXY € V, Z C V \ {X,Y,C}, if KCIT(X,Y|Z) rejects the null hypothesis, then X /A Y|Z.
Besides, if both KCIT(X,Y|Z) and RKCIT?(“) (X, Y| Z) fails to reject the null hypothesis, then X 1 Y|Z.

Rulel. VX,Y €V, if3Z C V\{X,Y,C} s.t. both KCIT(X,Y|Z) and RKCITP“)(X,Y |Z) fail to reject the null
hypothesis, then X and Y are not adjacent in G.

Proposition B.2. For a pair of variables X,Y € V, suppose that 3Z C V\{X,Y,C} s.t. KCIT(X, Y |Z) fails to reject

the null hypothesis. Besides, for all these Z, we have that RKCITA(©) (X,Y|Z) rejects the null hypothesis. Then, under

Assumption 4.1, i) X and Y are adjacent with a rare dependence, or ii) X and Y are not adjacent in G and C must be the
direct common effect of X and Y .



Causal Discovery in the Presence of Rare Dependence

Assumption B.1. VXY € V, Z C V \ {X,Y,C}, if KCIT(X,Y|Z) rejects the null hypothesis, then X /A Y|Z.
Besides, if both KCIT(X,Y|Z) and RKCIT?(“) (X, Y| Z) fails to reject the null hypothesis, then X 1 Y|Z.

Rule 2. For two variables X,Y € V that satisfy the con- / \
dition in Proposition B.2, if there exists Z C V\{X,Y,C},
such that RKCIT?(C"" ") (X, Y |Z) fail to reject the null

hypothesis, then X and Y are not adjacent in G. Here
CPe™™ denotes the shuffled C' in dataset D. C




Causal Discovery in the Presence of Rare Dependence

Algorithm

Rule 1. V X,Y €V, if3Z C V\{X,Y,C} s.t. both Algorithm 2 Rare Dependence PC (RD-PC)

KCIT(X,Y|Z) and RKCITP(©) (X,Y|Z2) fail to reject 1: Input: D: dataset. V: node set. C': reference variable.
the null hypothesis, then X and 'Y are not adjacent in G. 2: Output: causal graph G.

3. Stage 1: Causal skeleton discovery.

4: Initialize a complete undirected graph G on V.
Rule 2. For two variables X,Y € V that satisfy the con- 5. Remove the edge connected to C in G by Rule 1.
dition in Proposition B.e%m if there exists Z C V\{X,Y,C}, ¢ For X,Y € V\ {C}, remove the edge (X,Y) in G by
such that RKCITA (<" )(X ,Y'|Z) fail to reject the null Rule 1. If both X and Y are not adjacent to C, using
hypothesis, then X and Y are not adjacent in GG. Here KCIT only is enough.
CPe"™™ denotes the shuffled C' in dataset D. 7: Stage 2: Eliminating extraneous edges.

For X,Y € V\{C},ifboth X and Y are adjacent to C,
check whether (X, Y) are the extraneous edge. Shuffle
data of C in D as CP¢™™ _ if Rule 2 is satisfied, remove
the edge (X,Y),and orient X — C' andY — C.

8: Stage 3: Determining the orientation.
Orient edges in G with the same orientation procedure

as the PC algorithm (Meek, 1995).

Theorem 4.3. With Assumption 4.1, the causal Markov
assumption and faithfulness assumption, Algorithm 2 cor-
rectly recovers the underlying causal graph structure up to
its Markov equivalence class.




Causal Discovery in the Presence of Rare Dependence

Rule 1. V XY €V, if 3Z C V\{X,Y,C} s.t. both
KCIT(X,Y|Z) and RKCIT?©)(X,Y|Z) fail to reject
the null hypothesis, then X and Y are not adjacent in G.

Rule 2. For two variables X,Y € V that satisfy the con-
dition in Proposition B.2, if there exists Z C V\{X,Y,C},
such that RKCITP(C""") (X, Y| Z) fail to reject the null

hypothesis, then X and Y are not adjacent in G. Here
CPe™™ denotes the shuffled C' in dataset D.
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Conclusion and Future Work

® We portray the problem of rare dependence.

® We propose a novel testing method that combines kernel-based independence tests
with adaptive sample importance reweighting.

® We also extend the 1dea to detect conditional rare independence. In addition, we
integrate our reweighting CI tests into the PC algorithm for causal discovery in the
presence of rare dependence.

® Extension: distribution & bound for CI statistics, RDPC with less assumptions

® Extension: without data splitting/ towards high-dimensional variable.



