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Background

» Low Dynamic Range (LDR) images are constrained by limited luminance ranges (usually from 0 to 255, 8-bit), often
leading to loss of detail in shadows and highlights due to device or sensor limitations.

» High Dynamic Range (HDR) images, however, capture and display a significantly broader dynamic range (beyond 8-bits),
preserving intricate details in both extreme dark and bright regions.

This expanded capability enables HDR to closely mimic human visual perception, delivering superior contrast, naturalness,
and immersive quality compared to traditional imaging approaches.

Low Dynamic Range image High Dynamic Range image
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Motivation

High Dynamic Range Novel View Synthesis (HDR-NVS) aims to establish a 3D scene HDR model from Low Dynamic Range
(LDR) imagery. However, current HDR-NVS approaches typically rely on multi-exposure LDR images as input to reconstruct

3D HDR scenes, which have significant limitations, including susceptibility to motion, high capture and storage costs.
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Cai Y, Xiao Z, Liang Y, et al. HDR-GS: Efficient high dynamic range novel view synthesis at 1000x speed via gaussian splatting[J]. Advances in Neural Information Processing Systems, 2024,

37: 68453-68471.
Huang X, Zhang Q, Feng Y, et al. HDR-NeRF: High dynamic range neural radiance fields[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022:

18398-18408.
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Problem Formulation

We propose a more deployable yet more challenging task, namely HDR-NVS with single-exposure LDR images, which
eliminates the reliance on multiple exposures and thus avoids the aforementioned limitations. However, single-exposure
images frequently suffer from overexposure or underexposure, posing significant challenges for HDR-NVS.

At = 0.125s ..
Definition:
For each of N distinct viewpoints V' = {V, Vs, - -+ , Vv }, we capture a set of
single-exposure LDR images denoted as Il, = {I€/1’ I€/2, e ,I%,N}. The objec-

tive is to learn a 3D scene model F that can synthesize an HDR image I "}new for
any given novel viewpoint V,,¢,,:

(b) 'F : (I€v7 Vnew) — I"}new'

The synthesized HDR image I "}new needs to exhibit an expanded dynamic range
oy ¢ 5 compared to LDR training imagery, while maintaining geometric coherence with
the underlying 3D structure of the scene. Let G represent the 3D geometry inferred
from I', then F (I {,, Vinew) must align with G at a viewpoint V,,,,. In addition, the
HDR synthesis must preserve consistent lighting and color across different views.

Examples of (a, b) underexposure and (c, d) overexposure.
At: Exposure time.
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Overview of proposed Mono-HDR-3D:
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Iteration

Single-Exposure LDR
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LDR Image 3
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Viewpoint V'
Rasterization

» LDR-to-HDR Color Converter (L2H-CC)
» HDR-to-LDR Color Converter (H2L-CC)

HDR Image I"

H2L-CC
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Module Design

Camera imaging mechanism:

I — At/g- I, + Iy + €, Unsaturation;
L Imax, Saturation (1)

Let the saturated pixel value of LDR images in Eq. (1) as

Imax — Jjdeal — Ioverﬁow (2)

By integrating Eq. (2) with Eq. (1), the formation process of LDR images can be unified as:

Il = At/g : Ih +IO + € — Ioverﬂow’
S o )

D() B(:)

By reversing Eq. (3), the HDR value can be obtained as:

I, = Q/At : (Il — Iy + Ioverﬂow) _g/At * €, (4)
N o N ~ /N ~ >

X() S() Y()
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Module Design
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Experiments

» Synthetic Datasets:

Method Inference Speed (fps) LDR result HDR result
PSNRT SSIMt LPIPS| PSNRT SSIM{ LPIPS]
HDR-NeRF 0.26 3062 0.658 0285 1376 0511  0.443
Mono-HDR-NeRF (Ours) 0.26 3878 0936 0.048 3286 0940  0.068
HDR-GS 147.45 3948 0977 0.018 3530 0965  0.030
Mono-HDR-GS (Ours) 136.97 41.68 0983  0.009 3857 0975  0.012
» Real Datasets:
LDR result
Method PSNRT SSIMt LPIPS)
HDR-NeRF 3250  0.948  0.069
Mono-HDR-NeRF (Ours)  32.52  0.948  0.069
HDR-GS 3534 0966  0.019

Mono-HDR-GS (Ours) 35.81 0.967 0.017
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Visualization of Mono-HDR-GS and HDR-GS:

» HDR imaging comparison on the (a/b) synthetic and

» LDR imaging comparison on the (a/b) synthetic and (c)
(c) real datasets:

real datasets:

At = 0.125s

(@
@

(b) (®)

© ©

HDR-GS Mono-HDR-GS (Ours)

Ground Truth Mono-HDR-GS (Ours) Ground Truth
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Visualization of Mono-HDR-NeRF and HDR-NeRF:

» HDR imaging comparison on the synthetic datasets: » LDR imaging comparison on both (a/b) synthetic and (c) real datasets:

At = 0.125s

(@)

At = 0.125s
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HDR-NeRF Mono-HDR-NeRF (Ours) Ground Truth
HDR-NeRF Mono-HDR-NeRF (Ours) Ground Truth



