
Results
• RePaViT achieves more signi-

ficant accelerations as model 
size increases. 68.7% faster 
inference speed on ViT-Large.

• RePaViT realizes narrower
performance gaps and even
improves performance as 
model scales up. 1.7% higher
accuracy on ViT-Large.

• RePaViT works on various ViT
backbones and has potentials
on large foundation models.
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Motivation
• Existing efficient ViT methods often overlook the latency of FFN layers, 

which can contribute to more than 60% of the inference latency in large-
scale ViT models. 

• The proportion of FFN layers in the total inference latency escalates as 
model size increases.

• Structural reparameterization technique can simplify neural networks 
by linear algebra operations. However, its effectiveness on condensing 
FFN layers has barely been studied.

More Results

↑ Performance on CLIP
↓ Performance on downstream tasks

Comparison with state-of-the-arts →

Method
• To facilitate structural reparameterization on FFN layers, 

we keep some channels idle without being activated. 
As a result, these idle channels form a linear pathway 
through the activation function.

•  Vanilla FFN layers: 𝑶𝑶 𝟐𝟐𝟐𝟐𝟐𝟐𝑪𝑪𝟐𝟐
  1.𝑿𝑿In = LN 𝑿𝑿 𝑾𝑾In

  2.𝑿𝑿Act = Act 𝑿𝑿In
  3. 𝒀𝒀 = 𝑿𝑿Act𝑾𝑾Out + 𝑿𝑿
•  Ours during training: 𝑶𝑶 𝟐𝟐𝟐𝟐𝟐𝟐𝑪𝑪𝟐𝟐
  1. 𝑿𝑿In = BN 𝑿𝑿 𝑾𝑾In

  2. 𝑿𝑿Act = Act 𝑿𝑿 :, ∶𝜇𝜇𝜇𝜇
In ,  𝑿𝑿Idle = 𝑿𝑿[:, 𝜇𝜇𝜇𝜇+1:]

In

  3. 𝑿𝑿Con = Concat(𝑿𝑿Act,  𝑿𝑿Idle)
  4. 𝒀𝒀 = BN 𝑿𝑿Con 𝑾𝑾Out + 𝑿𝑿

•  Ours during inference: 𝑶𝑶 𝟐𝟐𝟐𝟐 + 𝟏𝟏 𝑵𝑵𝑪𝑪𝟐𝟐

  1. 𝒀𝒀 = Act 𝑿𝑿�𝑾𝑾In �𝑾𝑾Out + 𝑿𝑿�𝑾𝑾
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