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(Quantum) Supervised Learning: Classification

Data: p € C>*x* n-qubit quantum states

Label: y € R y € {1,2,...,k} for k-class classification

Unknown probability distribution (p,y) ~ I,

Goal:
Find i : C**% > R with small true error R(h) = Pri, g |h(p) # V
(p.y)

with sample S = {(p1, 1), (P2 Y2)s -+ (Pps Vi) } ~ D™




Example: Quantum Phase Classification

Generalized Cluster Hamiltonian

N

mhw=2(.'.. °;..)

Data: p(ji,J») ground state of H(j;, J,)

Label: y € {1,2,3,4} guantum phases

1. Symmetry Protected Topological
2. Ferromagnetic

3. Anti-Ferromagnetic

4. Trivial
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How do we find a good hypothesis h?



(Quantum) Supervised Learning

How do we find a good hypothesis h?
Note:

R(h) = Pr |h(x) # y| =
1. Choose a hypothesis class £ = {hy, h,, ...}

N\ 1
R =— 2, s
m
(PY)ES

2. Empirical Risk Minimization: A* = argminf?(h)
he#

3. Hope R(h*) ~ R(h*) J\,
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(Quantum) Supervised Learning

How do we find a good hypothesis h?
Note:

R(h) = Pr [h(x) # y| =
1. Choose a hypothesis class £ = {hy, h,, ...}

N\ 1
R =— 2, s
m
(PY)ES

2. Empirical Risk Minimization: A* = argminf?(h)
he#

3. Hope R(h*) ~ R(h*) J\,

Generalization Gap g(h) = |R(h) —IAQ(h)\
Question: Do we have a rigorous guarantee for generalization?

Answer: Yes! With complexity measure of Z .
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Generalization: Finite Hypothesis Class

Consider a finite Hypothesis Class Z = {h, h,, ..., hy}. |#Z | = N.
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For any 0 > 0, with probability higher than 1 -6, Vh e #Z
log| #Z | +1log2/6

n R(h) < R(h) + \/




Generalization: Finite Hypothesis Class

Consider a finite Hypothesis Class #Z = {h, h,, ..., hy}. |# | = N.

e — e e R R e e - e e R

For any 0 > 0, with probability higher than 1 -6, Vh e #Z

|
ﬂ R(b) < ROM) + \/log\%\ +log2/6
2m

L R R e e e R — R R R e e e e <—T1v_‘->_J

Proof Sketch:

Pr [max |R(h) — R(h)| > ¢
he#

< Y pr|IR®) = R(W)| > €| < | 7] x 2exp (—2me?)
he¥? '

Here, Complexity Measure is simply |# |




Quantum Neural Networks (QNNSs)

Variational Circuit POVMs: {EI’ AR Ek}

- Ir (Elpe)
p W =| (Expo)

-

_ Ir (Ekpe)

arg min, L(6) po= UOpUWO)
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Quantum Neural Networks (QNNSs)

Variational Circuit POVMs: {E, ..., E.} Prediction function (hypothesis) h: C*** - {1,2,...,k}:
_ hy(p) = arg max g(6);
It (EUO@) J
o Ir (E,p — -
p ep) = (Expo) Honn = (hy: 0 € O)
— Tr(Ekpe) ‘%QNN‘ = OO

arg min, L(6) po = UOpUWO)
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Generalization: Rademacher Complexity

1
Pri(c:=+1) =4+ —
(o ) 2

:| Rademacher Random Variable o;

. 1
(Empirical) Rademacher Complexity Ry #) = E_ [sup —Zh(zi)ai

hex M 1
Z€5 Prioi=—1) =+
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Generalization: Rademacher Complexity

. |
(Empirical) Rademacher Complexity Ry #) = E_ [sup —Z h(z))o;
heg

ZiES

For any 0 > 0, with probability higher than 1 —6, YVhe #Z

log2/6

2m

|
|
|
|

R(h) < R(h) + R(F) + 3\/

-

|

Rademacher Random Variable o;
1

1
Pr(c;=—1)=+—
(o ) 2

Previous result from finite Hypothesis class

log| #Z | +1og2/6

2m

R(h) < R(h) + \/

E—
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Generalization: Rademacher Complexity

Rademacher Random Variable o;

~ ] |
(Empirical) Rademacher Complexity ERS(%) =E_ | sup _Z h(z,)o; Pr(0i=+1)=+5
hex M

1
Z,€5 Prioi=—1) =+

For any 0 > 0, with probability higher than 1 —6, YVhe #Z

Previous result from finite Hypothesis class |

|
log 2/6 R(W) < RO + \/log | ?’/|2+ log2/6 |
m

|
|
|
|

R(h) < R(h) + R(F) + 3\/

- -

“Generalization in Quantum Machine Learning from few training data” (Nat. Comms. 2022)

A ~ | T
9as(y/QNN) €0 Z Is number of parameters in QNN

14



e R R — I R B

nature communications

Article https://doi.org/10.1038/s41467-022-32550-3

Generalization in quantum machine learning
from few training data

Received: 12 April 2022 Matthias C. Caro?2| , Hsin-Yuan Huang ®*#, M. Cerezo>®, Kunal Sharma’,
Andrew Sornborger®?, Lukasz Cincio® & Patrick J. Coles ®°

Accepted: 4 August 2022

Published online: 22 August 2022

Modern quantum machine learning (QML) methods involve variationally

% Check for updates optimizing a parameterized quantum circuit on a training data set, and sub-
sequently making predictions on a testing data set (i.e., generalizing). In this
work, we provide a comprehensive study of generalization performance in
QML after training on a limited number N of training data points. We show that
the generalization error of a quantum machine learning model with T trainable
gates scales at worst as /7 /N. When only K < T gates have undergone sub-
stantial change in the optimization process, we prove that the generalization
error improves to /K /N. Our results imply that the compiling of unitaries into
a polynomial number of native gates, a crucial application for the quantum
computing industry that typically uses exponential-size training data, can be
sped up significantly. We also show that classification of quantum states across
a phase transition with a quantum convolutional neural network requires only
a very small training data set. Other potential applications include learning
quantum error correcting codes or quantum dynamical simulation. Our work
injects new hope into the field of QML, as good generalization is guaranteed
from few training data.

A T . ,
R(h) < R(h) + O _ I': # of trainable

m parameters
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% Check for updates optimizing a parameterized quantum circuit on a training data set, and sub-
sequently making predictions on a testing data set (i.e., generalizing). In this
work, we provide a comprehensive study of generalization performance in
QML after training on a limited number N of training data points. We show that
the generalization error of a quantum machine learning model with T trainable
gates scales at worst as /7 /N. When only K < T gates have undergone sub-
stantial change in the optimization process, we prove that the generalization
error improves to /K /N. Our results imply that the compiling of unitaries into
a polynomial number of native gates, a crucial application for the quantum
computing industry that typically uses exponential-size training data, can be
sped up significantly. We also show that classification of quantum states across I
a phase transition with a quantum convolutional neural network requires only

a very small training data set. Other potential applications include learning
quantum error correcting codes or quantum dynamical simulation. Our work
injects new hope into the field of QML, as good generalization is guaranteed
from few training data.
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R(h) < R(h) + O _ I': # of trainable
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Understanding quantum machine learning
also requires rethinking generalization
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performance even when trained with few data. In this work, through sys-
tematic randomization experiments, we show that traditional approaches to
understanding generalization fail to explain the behavior of such quantum
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This I1s an “uniform bound”.

Can be vacuous.
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Margin Generalization ()

heorem
. For any o0 > 0 and y > 0, with probability at least 1 — 0 over the random draw of an i.i.d sample § of size m, the

following inequality holds for all h € #Z :

2 5 e n:# of qubits
R _ nb Zi:l HEZ'HG 111(1/5) e m: # of sample data
R(h) : True Error R(h) <R (h) + 0| — : . e E;: Measurement Operators
ﬁy(h) : Empirical Margin Error ”,,}; 4 m m e b :distance bound, ||[U—Ull,; <b
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/ Theorem
. For any o0 > 0 and y > 0, with probability at least 1 — 0 over the random draw of an i.i.d sample § of size m, the

t following inequality holds for all h € #Z :

2 5 e n:# of qubits
~ _ . ”EH e m: # of sample data
R(h) : True Error R(h) <R (h) + 0 ﬁ Z,=1 e : \/111(1/5) . e FE : Measurement Operators
I%y(h) : Empirical Margin Error 4 4 m m e b :distance bound, ||[U—Ull,; <b
VS.
ry V )
R(h)=0.2

—

Correctly Classified
‘ But not with

enough margin

misclassified misclassified
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Margin Generalization ()

. heorem
. For any o0 > 0 and y > 0, with probability at least 1 — 0 over the random draw of an i.i.d sample § of size m, the

following inequality holds for all h € #Z :

k 2
) _| nb _EL; In(1/6
R(h) : True Error R(h) < R},(h) + O n_\/ 21—1 | \/ Il( )
)4 m

ﬁy(h): Empirical Margin Error m

n: # of qubits

m : # of sample data
E; : Measurement Operators
b : distance bound, ||U = Ugll,; < b

Margin Distribution Plot
Conseguences — ifar

— cifar random
e mnist

Margin: hA(x), — max h(x),
17y

Margin distribution is important to

understand generalization

Left skewed margin dist. = Large generalization Upper bound

Right skewed margin dist. = Small generalization Upper bound .



Margin Generalization

Proof Sketch

R : Rademacher Complexity
A . Covering Number
F : Hypothesis Class of QML model

1. Rademacher Complexity

R In(2/6
R(h) < R (h) + 2R((F ) ) + 3\/ “(Zm s

2. Dudley’s Entropy Integral

R(U) < inf | —= 4 VIR BT Tdp | .

a>( \/%

4a 12 [\f
m a

3. Covering Number Bound for QML model

32mb2E?

e2y2

lnﬂ/((gms,&”' ‘ ‘2) Sln/V({UX U e [UQNN}94€_£9H°H2> < [ “ 1114N2,

Lipschitz property of Maurey's Sparsification Lemma

quantum measurement function g(x) 20



Experimental Results: Margin Boxplot

Solve
Quantum Phase Classification ?
| 0.8
2 H\
N—"
20 2
‘< 0.6
-9 —
@,
4 -
B v 0.4
)
e -
Wi g
£0.2
o
QCNN =
0.0
Training time (a.u.)
“Understanding Quantum Machine Learning
arg miny L(0) Also Requires Rethinking Generalization”

(Nat. Comm. 2024) 22



Experimental Results: Margin Boxplot

Solve

Quantum Phase Classification

e R ——— R S e ———— e S e R I A A —— A E— e

4 |
Corruption 0% Corruption 50% Corruption 100%
Test Accuracy Test Accuracy Test Accuracy
| 1 0.81 1 0.43 1 0.25
L1 [ 0.84 1L - [ 0.45 1L - [ 0.25
1 0.85 [ 0.45 1 0.25

4{ 5L 1 I 5L - I

Number of Layers
ul
—

oLy | - oL - | oL - |

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Margin Distribution

S

QCNN

Unlike previous uniform bounds, margin bound

-
S —

captures generalization behaviour of QML models

under label corruption.

arg mingy L(0)
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(a)

Margin effectively captures generalization behaviours (Better than the # of parameters).
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Experiment 2: Parmeter vs. Margin
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0.250 1

0.225 1

0.200 1
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QCNN
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Variational Ansatz
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Experiment 2: Parmeter vs. Margin

1. Mutual Information

I(g; 1) = H(g) — H(g | p)

| B Mutual Information

0.8 74 Kendall's Tau

0.7 How much information does u
2 0.6 ; rovide about g7
= V P g
> 0.5
O
0.4
v
S 0.3
O

0.2 2. Kendall’'s Rank Correlation

0.1

0o % 7 % 7 4 %

margin margin margin params eff. params  eff. params (G, M) = Z [1 + sgn(g; — gj) sgn(u; — ﬂj)] .
(Q1) (median) (mean) (10°1) (1072) 2n(n — 1) i<j

Are orderings of g and u aligned?
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Experiment 3

Answer: Margin Generalization Bounds!
Neural Quantum Embedding: Pushing the Limits of

Quantum Supervised Learning. Phys. Rev. A (2024) o “Trace Distance” upper bounds Margin mean

. .. lumean S Dtr(p+p+ap_p_)
e Large "Trace distance” = Small Training Error

e Open question: Why does it generalizes well? e lLarge Trace Distance — Right Skewed Margin Dist.

— Better Generalization

Fixed Quantum Embedding Trainable Quantum Embedding Neural Quantum Embedding
Test Accuracy Test Accuracy Test Accuracy
1 0.742 1 0.878 1 0.887
KMNIST1 £ 0762 X @ + 1 3 0.907 N 1 1 3 0.954 e
1 0.772 [ 1 0.908 [ 1 0.986
® Trace Distance
FASHION - P X = I - I X © ~| - I X ®

X Margin Mean

MNIST + } X ® ~| . I X o 4{ . i X0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Summary

e Established margin-based generalization bound for QML models.
e Experimentally demonstrated strong correlation between generalization and margin.

e Established connection between margins and quantum state discrimination.

Thank You
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