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Unknown probability distribution ,(ρ, y) ∼ 𝒟

Data:  ρ ∈ ℂ2n×2n
n-qubit quantum states  

Label:  y ∈ ℝ

Goal: 
Find  with small true error h : ℂ2n×2n ↦ ℝ R(h) = Pr(ρ,y)∼𝒟 [h(ρ) ≠ y]

with sample  S = {(ρ1, y1), (ρ2, y2), …, (ρm, ym)} ∼ 𝒟m

 for -class classification y ∈ {1,2,…, k} k
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Figure 2. Phase diagram of the generalized cluster Hamiltonian.
The ground-state phase diagram of the Hamiltonian of Eq. (3). It
comprises the phases: (I) symmetry-protected topological, (II) ferro-
magnetic, (III) anti-ferromagnetic, and (IV) trivial.

In the following, we present our experimental design and
the formal interpretation of our results. Even though it would
seem that our results contradict established theorems, we elu-
cidate how and why we can prove that uniform generalization
bounds are vacuous for currently tested models.

C. Numerical results

Here, we show the numerical results of our randomiza-
tion tests, focusing on a candidate architecture and a well-
established classification problem: the quantum convolutional
neural network (QCNN) [69] and the classification of quan-
tum phases of matter.

Classifying quantum phases of matter accurately is a rele-
vant task for the study of condensed-matter physics [72, 73].
Moreover, due to its significance, it frequently appears as a
benchmark problem in the literature [72, 74]. In our experi-
ments, we consider the generalized cluster Hamiltonian

H =
nX

j=1

(Zj � j1XjXj+1 � j2Xj�1ZjXj+1) , (3)

where n is the number of qubits, Xi and Zi are Pauli op-
erators acting on the i

th qubit, and j1 and j2 are coupling
strengths. Specifically, we classify states according to which
one of four symmetry-protected topological phases they dis-
play. As demonstrated in Ref. [75], and depicted in Fig. 2,
the ground-state phase diagram comprises the phases: (I)
symmetry-protected topological, (II) ferromagnetic, (III) anti-
ferromagnetic, and (IV) trivial.

The learning task we undertake involves identifying the cor-
rect quantum phase given the ground state of the generalized
cluster Hamiltonian for some choice of (j1, j2). We generate
a training set S = {(| ii, yi)}Ni=1 by sampling coupling co-
efficients uniformly at random in the domain j1, j2 2 [�4, 4],
with N being the number of training data points, | ii rep-
resenting the ground state vectors of H corresponding to the

sampled (j1, j2), and yi denoting the corresponding phase la-
bel among the aforementioned phases. In particular, labels are
length-two bit strings yi 2 {(0, 0), (0, 1), (1, 0), (1, 1)}.

We employ the QCNN architecture presented in Ref. [69] to
address the classification problem. By adapting classical con-
volutional neural networks to a quantum setting, QCNNs are
particularly well-suited for tasks involving spatial and tempo-
ral patterns, which makes this architecture a natural choice for
phase classification problems. A unique feature of the QCNN
architecture is the interleaving of convolutional and pooling
layers. Convolutional layers consist of translation-invariant
parameterized unitaries applied to neighboring qubits, func-
tioning as filters between feature maps across different layers
of the QCNN. Following the convolutional layer, pooling lay-
ers are introduced to reduce the dimensionality of the quantum
state while retaining the relevant features of the data. This is
achieved by measuring a subset of qubits and applying trans-
lationally invariant parameterized single-qubit unitaries based
on the corresponding measurement outcomes. Thus, each
pooling layer consistently reduces the number of qubits by a
constant factor, leading to quantum circuits with logarithmic
depth relative to the initial system size. These circuits share a
structural similarity to the multiscale entanglement renormal-
ization ansatz [76]. Nevertheless, in instances where the input
state to the QCNN exhibits, e.g., a high degree entanglement,
the efficient classical simulation of the circuit becomes infea-
sible.

The operation of a QCNN can be interpreted as a quantum
channel C# specified by parameters #, mapping an input state
⇢in into an output state ⇢out, represented as ⇢out = C# [⇢in].
Subsequently, the expectation value of a task-oriented Hermi-
tian operator is measured, utilizing the resulting ⇢out.

Our implementation follows that presented in Ref. [54].
The QCNN maps an input state vector | i, consisting of n

qubits, into a 2-qubit output state. For the labeling function
given the output state, we use the probabilities of the outcome
of each bit string when the state is measured in the compu-
tational basis (p00, p01, p10, p11). In particular, we predict the
label ŷ according to the measurement outcome with the lowest
probability according to

| i 7! (pb)b2{0,1}2 7! ŷ := arg min
b2{0,1}2

pb . (4)

For each experiment repetition, we generate data from the cor-
responding distribution D. For training, we use the loss func-
tion

` (#; (| i, y)) := hy| (C# [| iih i|]) |yi . (5)

This classification rule and loss function, which involve se-
lecting the outcome with the lowest probability, was already
utilized in Ref. [54]. The authors found that employing this
seemingly counter-intuitive loss function lead to good gener-
alization performance. Thus, given a training set S ⇠ D

N ,
we minimize the empirical risk

R̂S(#) =
1

N

NX

i=1

hyi| (C# [| iih i|]) |yii . (6)

Generalized Cluster Hamiltonian 

H( j1, j2) =
N

∑
j=1

(Zj − j1XjXj+1 − j2Xj−1ZjXj+1)

Data: ρ( j1, j2) ground state of  H( j1, j2)

Label: y ∈ {1,2,3,4} quantum phases 

1. Symmetry Protected Topological   
2. Ferromagnetic 
3. Anti-Ferromagnetic 
4. Trivial 
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How do we find a good hypothesis ? h

1. Choose a hypothesis class ℋ = {h1, h2, …}

2. Empirical Risk Minimization: h* = arg min
h∈ℋ

R̂(h)

3. Hope  🙏R̂(h*) ≈ R(h*)

Note: 
  R(h) = Pr [h(x) ≠ y] = 𝔼(ρ,y)∼𝒟 [1h(x)≠y]
R̂(h) =

1
m ∑

(ρ,y)∈S

1h(ρ)≠y
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How do we find a good hypothesis ? h

1. Choose a hypothesis class ℋ = {h1, h2, …}

2. Empirical Risk Minimization: h* = arg min
h∈ℋ

R̂(h)

3. Hope  🙏R̂(h*) ≈ R(h*)

Generalization Gap g(h) = |R(h) − R̂(h) |

Note: 
  R(h) = Pr [h(x) ≠ y] = 𝔼(ρ,y)∼𝒟 [1h(x)≠y]
R̂(h) =

1
m ∑

(ρ,y)∈S

1h(ρ)≠y

Question: Do we have a rigorous guarantee for generalization?

Answer: Yes! With complexity measure of .ℋ
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Consider a finite Hypothesis Class .  .ℋ = {h1, h2, …, hN} |ℋ | = N

For any  with probability higher than  δ ≥ 0, 1 − δ, ∀h ∈ ℋ

R(h) ≤ R̂(h) +
log |ℋ | + log 2/δ

2m
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Consider a finite Hypothesis Class .  .ℋ = {h1, h2, …, hN} |ℋ | = N

Proof Sketch: 

Pr [max
h∈ℋ

|R(h) − R̂(h) | ≥ ϵ] ≤ ∑
h∈ℋ

Pr [ |R(h) − R̂(h) | ≥ ϵ] ≤ |ℋ | × 2 exp (−2mϵ2)

For any  with probability higher than  δ ≥ 0, 1 − δ, ∀h ∈ ℋ

R(h) ≤ R̂(h) +
log |ℋ | + log 2/δ

2m

Here, Complexity Measure is simply  |ℋ |
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arg minθ L(θ)

Variational Circuit

U(θ)ρ

POVMs: {E1, …, Ek}

gθ(ρ) =

Tr (E1ρθ)
Tr (E2ρθ)

⋅
⋅

Tr (Ekρθ)

ρθ = U(θ)ρU(θ)†
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hθ(ρ) = arg max
j

g(θ)j

Prediction function (hypothesis) :h : ℂ2n×2n ↦ {1,2,…, k}

ℋQNN = {hθ : θ ∈ Θ}

arg minθ L(θ)

Variational Circuit

U(θ)ρ
 |ℋQNN | = ∞

POVMs: {E1, …, Ek}

gθ(ρ) =

Tr (E1ρθ)
Tr (E2ρθ)

⋅
⋅

Tr (Ekρθ)

ρθ = U(θ)ρU(θ)†
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(Empirical) Rademacher Complexity ℜ̂S(ℋ) = 𝔼σ sup
h∈ℋ

1
m ∑

zi∈S

h(zi)σi

Rademacher Random Variable σi

Pr(σi = + 1) = +
1
2

Pr(σi = − 1) = +
1
2
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(Empirical) Rademacher Complexity ℜ̂S(ℋ) = 𝔼σ sup
h∈ℋ

1
m ∑

zi∈S

h(zi)σi

Rademacher Random Variable σi

Pr(σi = + 1) = +
1
2

Pr(σi = − 1) = +
1
2

For any  with probability higher than  δ ≥ 0, 1 − δ, ∀h ∈ ℋ

R(h) ≤ R̂(h) + ℜ̂S(ℋ) + 3
log 2/δ

2m
R(h) ≤ R̂(h) +

log |ℋ | + log 2/δ
2m

Previous result from finite Hypothesis class
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(Empirical) Rademacher Complexity ℜ̂S(ℋ) = 𝔼σ sup
h∈ℋ

1
m ∑

zi∈S

h(zi)σi

Rademacher Random Variable σi

Pr(σi = + 1) = +
1
2

Pr(σi = − 1) = +
1
2

For any  with probability higher than  δ ≥ 0, 1 − δ, ∀h ∈ ℋ

R(h) ≤ R̂(h) + ℜ̂S(ℋ) + 3
log 2/δ

2m

ℜ̂S(ℋQNN) ∈ Õ ( T
m )

R(h) ≤ R̂(h) +
log |ℋ | + log 2/δ

2m

Previous result from finite Hypothesis class

T is number of parameters in QNN

“Generalization in Quantum Machine Learning from few training data” (Nat. Comms. 2022)  
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Generalization in quantummachine learning
from few training data

Matthias C. Caro1,2 , Hsin-Yuan Huang 3,4, M. Cerezo5,6, Kunal Sharma7,
Andrew Sornborger5,8, Lukasz Cincio9 & Patrick J. Coles 9

Modern quantum machine learning (QML) methods involve variationally
optimizing a parameterized quantum circuit on a training data set, and sub-
sequently making predictions on a testing data set (i.e., generalizing). In this
work, we provide a comprehensive study of generalization performance in
QML after training on a limited numberN of training data points.We show that
the generalization error of a quantummachine learningmodel with T trainable
gates scales at worst as

ffiffiffiffiffiffiffiffiffiffi
T=N

p
. When only K≪ T gates have undergone sub-

stantial change in the optimization process, we prove that the generalization
error improves to

ffiffiffiffiffiffiffiffiffiffi
K=N

p
. Our results imply that the compiling of unitaries into

a polynomial number of native gates, a crucial application for the quantum
computing industry that typically uses exponential-size training data, can be
sped up significantly.Wealso show that classification of quantum states across
a phase transition with a quantum convolutional neural network requires only
a very small training data set. Other potential applications include learning
quantum error correcting codes or quantum dynamical simulation. Our work
injects new hope into the field of QML, as good generalization is guaranteed
from few training data.

The ultimate goal of machine learning (ML) is to make accurate pre-
dictions on unseen data. This is known as generalization, and sig-
nificant effort has been expended to understand the generalization
capabilities of classical ML models. For example, theoretical results
have been formulated asupper bounds on the generalization error as a
function of the training data size and the model complexity1–5. Such
bounds provide guidance as to how much training data is required
and/or sufficient to achieve accurate generalization.

Quantum machine learning (QML) is an emerging field that has
generated great excitement6–9.ModernQML typically involves training
a parameterized quantum circuit in order to analyze either classical or
quantum data sets10–16. Early results indicate that, for classical data
analysis, QMLmodels may offer some advantage over classical models

under certain circumstances17–19. It has also been proven that QML
models can provide an exponential advantage in sample complexity
for analyzing quantum data20,21.

However, little is known about the conditions needed for accurate
generalization in QML. Significant progress has been made in under-
standing the trainability of QML models18,22–36, but trainability is a
separate question from generalization18,37,38. Overfitting of training
data could be an issue for QML, just as it is for classical machine
learning. Moreover, the training data size required for QML general-
ization has yet to be fully studied. Naïvely, one could expect that an
exponential number of training points are needed when training a
function acting on an exponentially large Hilbert space. For instance,
some studies have found that, exponentially in n, the number of
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Matthias C. Caro1,2 , Hsin-Yuan Huang 3,4, M. Cerezo5,6, Kunal Sharma7,
Andrew Sornborger5,8, Lukasz Cincio9 & Patrick J. Coles 9

Modern quantum machine learning (QML) methods involve variationally
optimizing a parameterized quantum circuit on a training data set, and sub-
sequently making predictions on a testing data set (i.e., generalizing). In this
work, we provide a comprehensive study of generalization performance in
QML after training on a limited numberN of training data points.We show that
the generalization error of a quantummachine learningmodel with T trainable
gates scales at worst as

ffiffiffiffiffiffiffiffiffiffi
T=N

p
. When only K≪ T gates have undergone sub-

stantial change in the optimization process, we prove that the generalization
error improves to

ffiffiffiffiffiffiffiffiffiffi
K=N

p
. Our results imply that the compiling of unitaries into

a polynomial number of native gates, a crucial application for the quantum
computing industry that typically uses exponential-size training data, can be
sped up significantly.Wealso show that classification of quantum states across
a phase transition with a quantum convolutional neural network requires only
a very small training data set. Other potential applications include learning
quantum error correcting codes or quantum dynamical simulation. Our work
injects new hope into the field of QML, as good generalization is guaranteed
from few training data.

The ultimate goal of machine learning (ML) is to make accurate pre-
dictions on unseen data. This is known as generalization, and sig-
nificant effort has been expended to understand the generalization
capabilities of classical ML models. For example, theoretical results
have been formulated asupper bounds on the generalization error as a
function of the training data size and the model complexity1–5. Such
bounds provide guidance as to how much training data is required
and/or sufficient to achieve accurate generalization.

Quantum machine learning (QML) is an emerging field that has
generated great excitement6–9.ModernQML typically involves training
a parameterized quantum circuit in order to analyze either classical or
quantum data sets10–16. Early results indicate that, for classical data
analysis, QMLmodels may offer some advantage over classical models

under certain circumstances17–19. It has also been proven that QML
models can provide an exponential advantage in sample complexity
for analyzing quantum data20,21.

However, little is known about the conditions needed for accurate
generalization in QML. Significant progress has been made in under-
standing the trainability of QML models18,22–36, but trainability is a
separate question from generalization18,37,38. Overfitting of training
data could be an issue for QML, just as it is for classical machine
learning. Moreover, the training data size required for QML general-
ization has yet to be fully studied. Naïvely, one could expect that an
exponential number of training points are needed when training a
function acting on an exponentially large Hilbert space. For instance,
some studies have found that, exponentially in n, the number of
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Understanding quantum machine learning
also requires rethinking generalization

Elies Gil-Fuster 1,2, Jens Eisert 1,2,3 & Carlos Bravo-Prieto 1

Quantum machine learning models have shown successful generalization
performance even when trained with few data. In this work, through sys-
tematic randomization experiments, we show that traditional approaches to
understanding generalization fail to explain the behavior of such quantum
models. Our experiments reveal that state-of-the-art quantumneural networks
accurately fit random states and random labeling of training data. This ability
tomemorize randomdata defies current notions of small generalization error,
problematizing approaches that build on complexity measures such as the VC
dimension, the Rademacher complexity, and all their uniform relatives. We
complement our empirical resultswith a theoretical construction showing that
quantum neural networks can fit arbitrary labels to quantum states, hinting at
their memorization ability. Our results do not preclude the possibility of good
generalization with few training data but rather rule out any possible guar-
antees based only on the properties of the model family. These findings
expose a fundamental challenge in the conventional understanding of gen-
eralization in quantummachine learning andhighlight the need for a paradigm
shift in the study of quantum models for machine learning tasks.

Quantum devices promise applications in solving computational
problems beyond the capabilities of classical computers1–5. Given the
paramount importance of machine learning in a wide variety of
algorithmic applications that make predictions based on training
data, it is a natural thought to investigate to what extent quantum
computers may assist in tackling machine learning tasks. Indeed,
such tasks are commonly listed among themost promising candidate
applications for near-term quantum devices6–9. To date, within this
emergent field of quantum machine learning (QML) a body of lit-
erature is available that heuristically explores the potential of
improving learning algorithms by having access to quantum
devices10–20. Among the models considered, parameterized quantum
circuits (PQCs), also known as quantum neural networks (QNNs),
take center stage in those considerations21–23. For fine-tuned pro-
blems in quantum machine learning, quantum advantages in com-
putational complexity have been proven over classical
computers24–27, but to date, such advantages rely on the availability of
full-scale quantum computers, not being within reach for near-term

architectures. While for PQCs such an advantage has not been shown
yet, a growing body of literature is available that investigates their
expressivity28–34, trainability35–44, and generalization45–60—basically
aimed at understanding what to expect from such quantum models.
Among those studies, the latter notions of generalization are parti-
cularly important since they are aimed at providing guarantees on
the performance of QML models with unseen data after the training
process.

The importance of notions of generalization for PQCs is actually
reflecting the development in classical machine learning: Vapnik’s
contributions61 have laid the groundwork for the formal study of sta-
tistical learning systems. This methodology was considered standard
in classical machine learning theory until roughly the last decade.
However, the mindset put forth in this work has been disrupted by
seminal work62 demonstrating that the conventional understanding of
generalization is unable to explain thegreat success of large-scale deep
convolutional neural networks. These networks, which display orders
of magnitude more trainable parameters than the dimensions of the
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Figure 3. Randomization tests for quantum phase recognition. (a) Generalization gap as a function of the training set size achieved by
the quantum convolutional neural network (QCNN) architecture. The QCNN is trained on real data, random label data, and random state
data. The horizontal dashed line is the largest generalization gap attainable, characterized by zero training error and test error equal to random
guessing (0.75 due to the task having four possible classes). The shaded area corresponds to the standard deviation across different experiment
repetitions. For the real data and random labels, we employed 8, 16, and 32 qubits, while for the random states, we employed 8, 10, and 12
qubits. We observe that both random labels and random states exhibit a similar trend in the generalization gap, with a slight discrepancy in
height due to the different relative frequencies of the four classes under the respective randomization protocols. In both cases, the test accuracy
fails to surpass that of random guessing. Notably, the largest generalization gap occurs in the random labels experiments when using a training
set of up to size N = 10, highlighting the memorization capacity of this particular QCNN. The training with uncorrupted data yields behavior
in accordance with previous results [54]. (b) Test error as a function of the ratio of label corruption after training the QCNN on training sets
of size N 2 4, 6, 8 and n = 8. The plot illustrates the interpolation between uncorrupted data (r = 0) and random labels (r = 1). As
the label corruption approaches 1, the test accuracy drops to levels of random guessing. The dependence between the test error and label
corruption reveals the ability of the QCNN to extract remaining signal despite the noise in the initial training set. The inset focuses on the case
N = 6. It conveys the optimization speed for four different levels of corruption, namely, 0, 2, 4 and 6 out of 6 labels being corrupted, and
provides insights into the average convergence time. The shaded area denotes the variance over five experiment repetitions with independently
initialized QCNN parameters. Surprisingly, on average, fitting completely random noise takes less time than fitting unperturbed data. This
phenomenon emphasizes that QCNNs can accurately memorize random data.

inal distribution (| i, y) ⇠ D0, and then we apply the follow-
ing transformation to the state vector | i: We compute the
mean µ and variance � of its amplitudes and then sam-
ple new amplitudes randomly from a Gaussian distribution
N (µ ,� ). After the new amplitudes are obtained, we nor-
malize them. The random state experiments were performed
with varying numbers of qubits n 2 {8, 10, 12} and training
set sizes N 2 {5, 8, 10, 14, 20}.

In Fig. 3 (a), we show the results for fitting random in-
put states, together with the random and real label experiment
outcomes. The empirical generalization gaps achieved by the
QCNN for random states exhibit a similar shape to those ob-
tained for random labels. Indeed, a slight difference in the
relative occurrences of each of the four classes leads to im-
proved performance by biased random guessing. We observe
that the QCNN can perfectly fit the training set for few data,
and then the generalization gap decreases, analogously to the
scenario with random labels.

The case of random states presents an intriguing aspect.
The QCNN architecture was initially designed to unveil and

exploit local correlations in input quantum states [69]. How-
ever, our randomization protocol in this experiment removes
precisely all local information, leaving only global informa-
tion from the original data, such as the mean and the variance
of the amplitudes. This was not the case in the random labels
experiment, where the input ground states remained unaltered
while only the labels were modified. The ability of the QCNN
to memorize random data seems to be unaffected despite its
structure to exploit local information.

D. Implications

Our findings indicate that novel approaches are required in
studying the capabilities of quantum neural networks. Here,
we elucidate how our experimental results fit the statistical
learning theoretic framework. The main goal of machine
learning is to find the expected risk minimizer f

opt associated

This is an “uniform bound”. 
Can be vacuous. 

🤔
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Theorem  
For any  and  with probability at least  over the random draw of an i.i.d sample  of size the 
following inequality holds for all  

δ > 0 γ > 0, 1 − δ S m,
h ∈ ℋ :

R(h) ≤ R̂γ(h) + Õ
nb
γ

∑k
i=1 ∥Ei∥2

σ

m
+

ln(1/δ)
m

.

•  # of qubits 
•  # of sample data 
•  Measurement Operators 

•  distance bound, 

n :
m :
Ei :
b : ∥U − Uref∥2,1 ≤ b

 True Error 
 Empirical Margin Error

R(h) :
R̂γ(h) :
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Theorem  
For any  and  with probability at least  over the random draw of an i.i.d sample  of size the 
following inequality holds for all  
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Theorem  
For any  and  with probability at least  over the random draw of an i.i.d sample  of size the 
following inequality holds for all  

δ > 0 γ > 0, 1 − δ S m,
h ∈ ℋ :

R(h) ≤ R̂γ(h) + Õ
nb
γ

∑k
i=1 ∥Ei∥2

σ

m
+

ln(1/δ)
m
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•  # of qubits 
•  # of sample data 
•  Measurement Operators 

•  distance bound, 

n :
m :
Ei :
b : ∥U − Uref∥2,1 ≤ b

Consequences

 True Error 
 Empirical Margin Error

R(h) :
R̂γ(h) :

Margin: h(x)y − max
i≠y

h(x)i

Margin distribution is important to  
understand generalization

(a) mnist is easier than cifar10. (b) Random mnist is as hard as random cifar10!

(c) cifar100 is as hard as cifar10 with random labels! (d) Random inputs are harder than random labels.

Figure 3: A variety of margin distributions. Axes are re-scaled in Figure 3a, but identical in the other
subplots; the cifar10 (blue) and random cifar10 (green) distributions are the same each time.

here is the sensitivity to the spectral norm, and that there is no explicit appearance of combinatorial
quantities such as numbers of parameters or layers (outside of log terms, and indices to summations and
products).

To close, miscellaneous observations and open problems are collected in Section 4.

2 Generalization case studies via margin distributions

In this section, we empirically study the generalization behavior of neural networks, via margin distribu-
tions and the generalization bound stated in Theorem 1.1.

Before proceeding with the plots, it’s a good time to give a more refined description of the margin
distribution, one that is suitable for comparisons across datasets. Given n pattern/label pairs ((xi, yi))ni=1,
with patterns as rows of matrix X 2 Rn⇥d, and given a predictor FA : Rd ! Rk, the (normalized) margin
distribution is the univariate empirical distribution of the labeled data points each transformed into a
single scalar according to

(x, y) 7! FA(x)y �maxi 6=y FA(x)i
RAkXk2/n

,

where the spectral complexity RA is from eq. (1.2). The normalization is thus derived from the bound in
Theorem 1.1, but ignoring log terms.

Taken this way, the two margin distributions for two datasets can be interpreted as follows. Considering
any fixed point on the horizontal axis, if the cumulative distribution of one density is lower than the
other, then it corresponds to a lower right hand side in Theorem 1.1. For no reason other than visual
interpretability, the plots here will instead depict a density estimate of the margin distribution. The

4

Margin Distribution Plot

Left skewed margin dist.  Large generalization Upper bound 
Right skewed margin dist.  Small generalization Upper bound 

↦
↦



Margin Generalization

20

Proof Sketch 

R(h) ≤ R̂γ(h) + 2ℜ((ℱγ)|S) + 3
ln(2/δ)

2m
,

1. Rademacher Complexity

2. Dudley’s Entropy Integral

ℜ(U) ≤ inf
α>0

4α

m
+

12
m ∫

m

α
ln 𝒩(U, β,∥ ⋅ ∥2)dβ .

ln 𝒩 ((ℱγ)|S, ϵ, | | ⋅ | |2 ) ≤ ln 𝒩 ({UX : U ∈ 𝕌QNN},
ϵγ
4E

, | | ⋅ | |2 ) ≤ ⌈ 32mb2E2

ϵ2γ2 ⌉ ln 4N2,

3. Covering Number Bound for QML model

Lipschitz property of  
quantum measurement function g(x)

Maurey’s Sparsification Lemma

 Rademacher Complexity 
 Covering Number 
 Hypothesis Class of QML model

ℜ :
𝒩 :
ℱ :
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Figure 2. Phase diagram of the generalized cluster Hamiltonian.
The ground-state phase diagram of the Hamiltonian of Eq. (3). It
comprises the phases: (I) symmetry-protected topological, (II) ferro-
magnetic, (III) anti-ferromagnetic, and (IV) trivial.

In the following, we present our experimental design and
the formal interpretation of our results. Even though it would
seem that our results contradict established theorems, we elu-
cidate how and why we can prove that uniform generalization
bounds are vacuous for currently tested models.

C. Numerical results

Here, we show the numerical results of our randomiza-
tion tests, focusing on a candidate architecture and a well-
established classification problem: the quantum convolutional
neural network (QCNN) [69] and the classification of quan-
tum phases of matter.

Classifying quantum phases of matter accurately is a rele-
vant task for the study of condensed-matter physics [72, 73].
Moreover, due to its significance, it frequently appears as a
benchmark problem in the literature [72, 74]. In our experi-
ments, we consider the generalized cluster Hamiltonian

H =
nX

j=1

(Zj � j1XjXj+1 � j2Xj�1ZjXj+1) , (3)

where n is the number of qubits, Xi and Zi are Pauli op-
erators acting on the i

th qubit, and j1 and j2 are coupling
strengths. Specifically, we classify states according to which
one of four symmetry-protected topological phases they dis-
play. As demonstrated in Ref. [75], and depicted in Fig. 2,
the ground-state phase diagram comprises the phases: (I)
symmetry-protected topological, (II) ferromagnetic, (III) anti-
ferromagnetic, and (IV) trivial.

The learning task we undertake involves identifying the cor-
rect quantum phase given the ground state of the generalized
cluster Hamiltonian for some choice of (j1, j2). We generate
a training set S = {(| ii, yi)}Ni=1 by sampling coupling co-
efficients uniformly at random in the domain j1, j2 2 [�4, 4],
with N being the number of training data points, | ii rep-
resenting the ground state vectors of H corresponding to the

sampled (j1, j2), and yi denoting the corresponding phase la-
bel among the aforementioned phases. In particular, labels are
length-two bit strings yi 2 {(0, 0), (0, 1), (1, 0), (1, 1)}.

We employ the QCNN architecture presented in Ref. [69] to
address the classification problem. By adapting classical con-
volutional neural networks to a quantum setting, QCNNs are
particularly well-suited for tasks involving spatial and tempo-
ral patterns, which makes this architecture a natural choice for
phase classification problems. A unique feature of the QCNN
architecture is the interleaving of convolutional and pooling
layers. Convolutional layers consist of translation-invariant
parameterized unitaries applied to neighboring qubits, func-
tioning as filters between feature maps across different layers
of the QCNN. Following the convolutional layer, pooling lay-
ers are introduced to reduce the dimensionality of the quantum
state while retaining the relevant features of the data. This is
achieved by measuring a subset of qubits and applying trans-
lationally invariant parameterized single-qubit unitaries based
on the corresponding measurement outcomes. Thus, each
pooling layer consistently reduces the number of qubits by a
constant factor, leading to quantum circuits with logarithmic
depth relative to the initial system size. These circuits share a
structural similarity to the multiscale entanglement renormal-
ization ansatz [76]. Nevertheless, in instances where the input
state to the QCNN exhibits, e.g., a high degree entanglement,
the efficient classical simulation of the circuit becomes infea-
sible.

The operation of a QCNN can be interpreted as a quantum
channel C# specified by parameters #, mapping an input state
⇢in into an output state ⇢out, represented as ⇢out = C# [⇢in].
Subsequently, the expectation value of a task-oriented Hermi-
tian operator is measured, utilizing the resulting ⇢out.

Our implementation follows that presented in Ref. [54].
The QCNN maps an input state vector | i, consisting of n

qubits, into a 2-qubit output state. For the labeling function
given the output state, we use the probabilities of the outcome
of each bit string when the state is measured in the compu-
tational basis (p00, p01, p10, p11). In particular, we predict the
label ŷ according to the measurement outcome with the lowest
probability according to

| i 7! (pb)b2{0,1}2 7! ŷ := arg min
b2{0,1}2

pb . (4)

For each experiment repetition, we generate data from the cor-
responding distribution D. For training, we use the loss func-
tion

` (#; (| i, y)) := hy| (C# [| iih i|]) |yi . (5)

This classification rule and loss function, which involve se-
lecting the outcome with the lowest probability, was already
utilized in Ref. [54]. The authors found that employing this
seemingly counter-intuitive loss function lead to good gener-
alization performance. Thus, given a training set S ⇠ D

N ,
we minimize the empirical risk

R̂S(#) =
1

N

NX

i=1

hyi| (C# [| iih i|]) |yii . (6)
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FIG. 2. (a) Schematic representation of the quantum circuit used in the experiments. The green section indicates the Neural Quantum
Embedding (NQE), which transforms classical data G8 into quantum state |G8i. The blue section represents the Quantum Convolutional Neural
Network (QCNN) architecture. (b) Plot depicting the evolution of the trace distance between two ensembles of quantum states embedded by
the NQE models during training on the ibmq toronto device, compared to the trace distance from conventional quantum embedding without
NQE. (c) Noiseless QCNN simulation results. (d) The results from QCNN experiments conducted on IBM quantum devices. In (c) and (d),
the blue solid, red dashed green dash-dotted lines represent the mean training loss histories for conventional ZZ feature embedding, PCA-NQE,
and NQE, respectively. The shaded regions in the figure represent one standard deviation from the mean. These values are acquired from five
repetitions of each QCNN training with random initialization of parameters. The thicker versions of these lines indicate the theoretical lower
bounds for each method.

tion performance.
The effective dimension can also be interpreted as a mea-

sure of the volume of the solution space that a specific model
class can encompass. A smaller effective dimension in a QML
model implies a reduced volume of the solution space. This
observation is particularly relevant as it suggests that mod-
els with smaller effective dimensions are less prone to en-
countering barren plateaus [51]. Consequently, the simulation
results further indicate that NQE not only enhances general-
ization performance but also improves the trainability of the
model. Further evidence substantiating this improvement for
both QNN and QKM will be presented in a later section.

E. Generalization in Quantum Kernel Method

Up to this point, the investigation of NQE has primarily fo-
cused on its application within the context of quantum neural
networks. In this section, we extend the analysis to demon-
strate that NQE also enhances the performance of the quantum
kernel method. Given a quantum embedding, the kernel func-

tion can be defined as

:
&

(G8 , G 9 ) =
��⌦
G8

��
G 9

↵��2
, (5)

which can be computed efficiently on a quantum computer.
The quantum kernel method refers to an approach that uses
the kernel matrix  &, of which each entry is the kernel of the
corresponding data points, in a method like a classical support
vector machine [17, 34]. The potential quantum advantage
of such approach is based on the hardness to compute certain
quantum kernel functions classically [17, 18, 33].

The quantum kernel method attempts to determine the func-
tion 5 (G;,) = Tr(, |GihG |) to predict the true underlying
function ⌘(G) for unseen data G. The optimal parameters ,⇤

are obtained by minimizing the cost function

,
⇤ = arg min

,2C2=⇥2=
( 5 (G;,) � ⌘(G))

2
� _ | |, | |

2
F, (6)

where | | · | |F is the Frobenius norm. The second term is the
regularization term with a hyperparameter _. The purpose of
including the regularization term is to reduce the generaliza-
tion error at the expense of the training error. Specifically,
considering the true error '(,) = EG | 5 (G;,) � ⌘(G) |, and

with
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Figure 3. Randomization tests for quantum phase recognition. (a) Generalization gap as a function of the training set size achieved by
the quantum convolutional neural network (QCNN) architecture. The QCNN is trained on real data, random label data, and random state
data. The horizontal dashed line is the largest generalization gap attainable, characterized by zero training error and test error equal to random
guessing (0.75 due to the task having four possible classes). The shaded area corresponds to the standard deviation across different experiment
repetitions. For the real data and random labels, we employed 8, 16, and 32 qubits, while for the random states, we employed 8, 10, and 12
qubits. We observe that both random labels and random states exhibit a similar trend in the generalization gap, with a slight discrepancy in
height due to the different relative frequencies of the four classes under the respective randomization protocols. In both cases, the test accuracy
fails to surpass that of random guessing. Notably, the largest generalization gap occurs in the random labels experiments when using a training
set of up to size N = 10, highlighting the memorization capacity of this particular QCNN. The training with uncorrupted data yields behavior
in accordance with previous results [54]. (b) Test error as a function of the ratio of label corruption after training the QCNN on training sets
of size N 2 4, 6, 8 and n = 8. The plot illustrates the interpolation between uncorrupted data (r = 0) and random labels (r = 1). As
the label corruption approaches 1, the test accuracy drops to levels of random guessing. The dependence between the test error and label
corruption reveals the ability of the QCNN to extract remaining signal despite the noise in the initial training set. The inset focuses on the case
N = 6. It conveys the optimization speed for four different levels of corruption, namely, 0, 2, 4 and 6 out of 6 labels being corrupted, and
provides insights into the average convergence time. The shaded area denotes the variance over five experiment repetitions with independently
initialized QCNN parameters. Surprisingly, on average, fitting completely random noise takes less time than fitting unperturbed data. This
phenomenon emphasizes that QCNNs can accurately memorize random data.

inal distribution (| i, y) ⇠ D0, and then we apply the follow-
ing transformation to the state vector | i: We compute the
mean µ and variance � of its amplitudes and then sam-
ple new amplitudes randomly from a Gaussian distribution
N (µ ,� ). After the new amplitudes are obtained, we nor-
malize them. The random state experiments were performed
with varying numbers of qubits n 2 {8, 10, 12} and training
set sizes N 2 {5, 8, 10, 14, 20}.

In Fig. 3 (a), we show the results for fitting random in-
put states, together with the random and real label experiment
outcomes. The empirical generalization gaps achieved by the
QCNN for random states exhibit a similar shape to those ob-
tained for random labels. Indeed, a slight difference in the
relative occurrences of each of the four classes leads to im-
proved performance by biased random guessing. We observe
that the QCNN can perfectly fit the training set for few data,
and then the generalization gap decreases, analogously to the
scenario with random labels.

The case of random states presents an intriguing aspect.
The QCNN architecture was initially designed to unveil and

exploit local correlations in input quantum states [69]. How-
ever, our randomization protocol in this experiment removes
precisely all local information, leaving only global informa-
tion from the original data, such as the mean and the variance
of the amplitudes. This was not the case in the random labels
experiment, where the input ground states remained unaltered
while only the labels were modified. The ability of the QCNN
to memorize random data seems to be unaffected despite its
structure to exploit local information.

D. Implications

Our findings indicate that novel approaches are required in
studying the capabilities of quantum neural networks. Here,
we elucidate how our experimental results fit the statistical
learning theoretic framework. The main goal of machine
learning is to find the expected risk minimizer f

opt associated

“Understanding Quantum Machine Learning  
Also Requires Rethinking Generalization” 
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Figure 2. Phase diagram of the generalized cluster Hamiltonian.
The ground-state phase diagram of the Hamiltonian of Eq. (3). It
comprises the phases: (I) symmetry-protected topological, (II) ferro-
magnetic, (III) anti-ferromagnetic, and (IV) trivial.

In the following, we present our experimental design and
the formal interpretation of our results. Even though it would
seem that our results contradict established theorems, we elu-
cidate how and why we can prove that uniform generalization
bounds are vacuous for currently tested models.

C. Numerical results

Here, we show the numerical results of our randomiza-
tion tests, focusing on a candidate architecture and a well-
established classification problem: the quantum convolutional
neural network (QCNN) [69] and the classification of quan-
tum phases of matter.

Classifying quantum phases of matter accurately is a rele-
vant task for the study of condensed-matter physics [72, 73].
Moreover, due to its significance, it frequently appears as a
benchmark problem in the literature [72, 74]. In our experi-
ments, we consider the generalized cluster Hamiltonian

H =
nX

j=1

(Zj � j1XjXj+1 � j2Xj�1ZjXj+1) , (3)

where n is the number of qubits, Xi and Zi are Pauli op-
erators acting on the i

th qubit, and j1 and j2 are coupling
strengths. Specifically, we classify states according to which
one of four symmetry-protected topological phases they dis-
play. As demonstrated in Ref. [75], and depicted in Fig. 2,
the ground-state phase diagram comprises the phases: (I)
symmetry-protected topological, (II) ferromagnetic, (III) anti-
ferromagnetic, and (IV) trivial.

The learning task we undertake involves identifying the cor-
rect quantum phase given the ground state of the generalized
cluster Hamiltonian for some choice of (j1, j2). We generate
a training set S = {(| ii, yi)}Ni=1 by sampling coupling co-
efficients uniformly at random in the domain j1, j2 2 [�4, 4],
with N being the number of training data points, | ii rep-
resenting the ground state vectors of H corresponding to the

sampled (j1, j2), and yi denoting the corresponding phase la-
bel among the aforementioned phases. In particular, labels are
length-two bit strings yi 2 {(0, 0), (0, 1), (1, 0), (1, 1)}.

We employ the QCNN architecture presented in Ref. [69] to
address the classification problem. By adapting classical con-
volutional neural networks to a quantum setting, QCNNs are
particularly well-suited for tasks involving spatial and tempo-
ral patterns, which makes this architecture a natural choice for
phase classification problems. A unique feature of the QCNN
architecture is the interleaving of convolutional and pooling
layers. Convolutional layers consist of translation-invariant
parameterized unitaries applied to neighboring qubits, func-
tioning as filters between feature maps across different layers
of the QCNN. Following the convolutional layer, pooling lay-
ers are introduced to reduce the dimensionality of the quantum
state while retaining the relevant features of the data. This is
achieved by measuring a subset of qubits and applying trans-
lationally invariant parameterized single-qubit unitaries based
on the corresponding measurement outcomes. Thus, each
pooling layer consistently reduces the number of qubits by a
constant factor, leading to quantum circuits with logarithmic
depth relative to the initial system size. These circuits share a
structural similarity to the multiscale entanglement renormal-
ization ansatz [76]. Nevertheless, in instances where the input
state to the QCNN exhibits, e.g., a high degree entanglement,
the efficient classical simulation of the circuit becomes infea-
sible.

The operation of a QCNN can be interpreted as a quantum
channel C# specified by parameters #, mapping an input state
⇢in into an output state ⇢out, represented as ⇢out = C# [⇢in].
Subsequently, the expectation value of a task-oriented Hermi-
tian operator is measured, utilizing the resulting ⇢out.

Our implementation follows that presented in Ref. [54].
The QCNN maps an input state vector | i, consisting of n

qubits, into a 2-qubit output state. For the labeling function
given the output state, we use the probabilities of the outcome
of each bit string when the state is measured in the compu-
tational basis (p00, p01, p10, p11). In particular, we predict the
label ŷ according to the measurement outcome with the lowest
probability according to

| i 7! (pb)b2{0,1}2 7! ŷ := arg min
b2{0,1}2

pb . (4)

For each experiment repetition, we generate data from the cor-
responding distribution D. For training, we use the loss func-
tion

` (#; (| i, y)) := hy| (C# [| iih i|]) |yi . (5)

This classification rule and loss function, which involve se-
lecting the outcome with the lowest probability, was already
utilized in Ref. [54]. The authors found that employing this
seemingly counter-intuitive loss function lead to good gener-
alization performance. Thus, given a training set S ⇠ D

N ,
we minimize the empirical risk

R̂S(#) =
1

N

NX

i=1

hyi| (C# [| iih i|]) |yii . (6)
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FIG. 2. (a) Schematic representation of the quantum circuit used in the experiments. The green section indicates the Neural Quantum
Embedding (NQE), which transforms classical data G8 into quantum state |G8i. The blue section represents the Quantum Convolutional Neural
Network (QCNN) architecture. (b) Plot depicting the evolution of the trace distance between two ensembles of quantum states embedded by
the NQE models during training on the ibmq toronto device, compared to the trace distance from conventional quantum embedding without
NQE. (c) Noiseless QCNN simulation results. (d) The results from QCNN experiments conducted on IBM quantum devices. In (c) and (d),
the blue solid, red dashed green dash-dotted lines represent the mean training loss histories for conventional ZZ feature embedding, PCA-NQE,
and NQE, respectively. The shaded regions in the figure represent one standard deviation from the mean. These values are acquired from five
repetitions of each QCNN training with random initialization of parameters. The thicker versions of these lines indicate the theoretical lower
bounds for each method.

tion performance.
The effective dimension can also be interpreted as a mea-

sure of the volume of the solution space that a specific model
class can encompass. A smaller effective dimension in a QML
model implies a reduced volume of the solution space. This
observation is particularly relevant as it suggests that mod-
els with smaller effective dimensions are less prone to en-
countering barren plateaus [51]. Consequently, the simulation
results further indicate that NQE not only enhances general-
ization performance but also improves the trainability of the
model. Further evidence substantiating this improvement for
both QNN and QKM will be presented in a later section.

E. Generalization in Quantum Kernel Method

Up to this point, the investigation of NQE has primarily fo-
cused on its application within the context of quantum neural
networks. In this section, we extend the analysis to demon-
strate that NQE also enhances the performance of the quantum
kernel method. Given a quantum embedding, the kernel func-

tion can be defined as

:
&

(G8 , G 9 ) =
��⌦
G8

��
G 9

↵��2
, (5)

which can be computed efficiently on a quantum computer.
The quantum kernel method refers to an approach that uses
the kernel matrix  &, of which each entry is the kernel of the
corresponding data points, in a method like a classical support
vector machine [17, 34]. The potential quantum advantage
of such approach is based on the hardness to compute certain
quantum kernel functions classically [17, 18, 33].

The quantum kernel method attempts to determine the func-
tion 5 (G;,) = Tr(, |GihG |) to predict the true underlying
function ⌘(G) for unseen data G. The optimal parameters ,⇤

are obtained by minimizing the cost function

,
⇤ = arg min

,2C2=⇥2=
( 5 (G;,) � ⌘(G))

2
� _ | |, | |

2
F, (6)

where | | · | |F is the Frobenius norm. The second term is the
regularization term with a hyperparameter _. The purpose of
including the regularization term is to reduce the generaliza-
tion error at the expense of the training error. Specifically,
considering the true error '(,) = EG | 5 (G;,) � ⌘(G) |, and

with
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Figure 1: A Tukey box-and-whisker plot depicting the margin distributions of optimized 8-qubit
Quantum Convolutional Neural Networks (QCNNs). The results for QCNNs with one, five, and
nine layers are displayed, along with their corresponding test accuracies indicated in the legend.
QCNNs were trained for 4-class classification task aimed at quantum phase recognition (QPR). The
experiment was performed with varying degrees of label noise: QPR dataset with pure labels (left),
half randomly labelled dataset (middle), and full randomly labelled datasets (right). As the noise
(randomization) level increases, the margin distributions tend to exhibit a more pronounced skew
towards the left, indicating that a greater proportion of samples are classified with smaller margins.
Notably, the margin distribution exhibits a strong positive correlation with test accuracy across all
scenarios.

Figure 1 presents the margin distributions of optimized 8-qubit QCNNs using box-and-whisker
plots, along with corresponding test accuracies, for models with one, five, and nine QCNN layers. A
right-skewed box plot suggests that the data are classified with larger margins, which is associated
with a tighter generalization upper bound (i.e., a smaller right-hand side in Equation (5)).

Across all layer configurations, increasing label randomization leads to decreased test accuracy.
Concurrently, label randomization shifts the margin distributions significantly to the left. This left-
ward shift in the margin distributions results in a larger upper bound on the true error, as indicated
in Equation 5, showing that the margin bound effectively captures the generalization behavior under
randomized labels.

Additionally, when labels are not completely randomized, QCNNs with deeper layers tend to achieve
higher test accuracy. This suggests that deeper QCNNs, due to increased expressibility, can identify
hypotheses closer to the optimal one. As the test accuracy increases, we observe a corresponding
rightward shift in the margin distributions, further highlighting that margin distributions are reliable
indicators of generalization performance in the QML framework.

Detailed experimental procedures and additional results using different variational ansätze are pro-
vided in Appendix A.2, Figure 5.

3.2 PREDICTING GENERALIZATION GAP: PARAMETERS VS MARGINS

In our earlier analyses, we identified a strong correlation between margin distributions and general-
ization performance. Here, we demonstrate the effectiveness of margin-based metrics in estimating
the generalization gap, highlighting their advantages over traditional uniform bounds.

Caro et al. (2022) showed that the generalization gap in QML models can be estimated based on the
number of trainable parameters. Specifically, they proved that, in the worst case, the generalization
gap scales with the square root of the parameter count. Furthermore, when only a subset of pa-
rameters undergoes substantial change during training, the generalization gap scales with the square
root of the effective parameters that undergo significant updates. Despite being uniform bounds, the
parameter-based generalization approach has become a standard method for understanding general-
ization behavior in QML models.

To illustrate the effectiveness of margins in estimating the generalization gap, we compare three
margin-based metrics with three parameter-based metrics. For margin-based metrics, we analyze
the lower quartile, median, and mean values of the margin distribution. For parameter-based met-
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Figure 2: Illustration of how the generalization gap, median of the margin distribution (a margin-
based metric), and effective parameters with a 10�2 threshold (a parameter-based metric) vary with
the number of layers, percentage of randomized labels, and the choice of variational ansätze.

rics, we examine both the total number of parameters and the count of effective parameters that
undergo substantial change during optimization. Specifically, we define effective parameters using
two thresholds, 10�1 and 10�2, which represent the minimum change in a parameter (the rotation
angle of parameterized quantum gates) for it to be considered effective.

Figure 2 depicts how the generalization gap, median margin, and effective parameters (with a 10�2

threshold) change in response to variations in the number of QCNN layers, the percentage of ran-
domized labels, and the choice of variational ansatz. Since margins are inversely correlated with
generalization gap (as shown in Equation (5)), the inverse of the median margin is plotted instead.
Additionally, following the results of Caro et al. (2022), we plot the square root of the number of
effective parameters.

Figure 2(a) shows how the generalization gap, inverse median margin, and the square root of effec-
tive parameters vary with the number of QCNN layers—1, 3, 5, 7, and 9. The generalization gap
reaches its peaks at five layers before slightly decreasing. While the effective parameters increase
monotonically with the number of layers, the median margin effectively captures the peak at five
layers.

Similarly, in Figure 2(b), the margin effectively captures the rising generalization gap as the per-
centage of randomized labels increases, while the effective parameters show an inverse trend.

In Figure 2(c), we analyze three variational ansätze, QCNN, QCNN with shared parameters (Cong
et al., 2019; Hur et al., 2022), and Strongly Entangling Layers (Bergholm et al., 2020), arranged in
decreasing order of expressibility. In this case, the QCNN with shared parameters constrains the
local parameterized unitaries within the convolutional layers to share identical parameter values.
The margin correctly reflects the rising generalization gap as expressibility decreases, while the
effective parameters show an inverse trend.

In summary, the margin reliably captures variations in the generalization gap across different hy-
perparameters, whereas effective parameters fails to do so and sometimes show the opposite trend.
Note that the median margin is used instead of the lower quartile (Q1) to avoid infinite inverse mar-
gins when Q1 is zero, a scenario that occasionally arises when the labels are fully randomized and
the model employs an inexpressive variational ansatz. Effective parameters are shown instead of
the total number of parameters, as the latter remains constant despite changes in randomized label
percentages, unlike the generalization gap. Additional comparisons—margin mean and Q1 versus
total and effective parameters—without label noise are provided in Appendix A.2, Figure 6.

Thus far, we have compared how margins and the number of parameters capture generalization by
varying one hyperparameter at a time while keeping the others fixed. Now, we present a more
comprehensive comparison with all hyperparameters varied simultaneously. More specifically, for a
given set of hyperparameters �, we examine the correlation between the generalization gap g(�) and
the corresponding metric µ(�). Here, as before, the metrics can be either margin-based or parameter-
based. To assess correlation, we analyzed two different evaluation methods: mutual information and
Kendall rank correlation coefficient. Both methods (or their variants) have been used to assess
generalization capacity in classical deep learning (Jiang et al., 2019; 2020; Dziugaite et al., 2020).
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Figure 3: Comparative analysis of mutual information (solid) and Kendall rank correlation coeffi-
cients (shaded) between the generalization gap and various metrics. The first three columns represent
margin-based metrics, while the last three columns represent parameter-based metrics.

In mutual information analysis, we treat the hyperparameter � as a random vector, with g(�)
and µ(�) as functions of this vector. Mutual information, denoted by I(g;µ), is defined as
I(g;µ) = E

h
log P (g,µ)

P (g)P (µ)

i
, which simplifies to H(g)�H(g|µ). Here, H(g) represents the entropy

of g, quantifying the uncertainty of the generalization gap, while H(g|µ) is the conditional entropy
of g given µ, indicating the remaining uncertainty about the generalization gap given µ. Thus,
higher mutual information I(g;µ) suggests that µ provides more information about g, reducing the
uncertainty associated with g.

In contrast, the Kendall rank correlation coefficient ⌧ measures the strength and direction of the as-
sociation between two variables. For pairs of generalization gap and metric values, (g(�1), µ(�1))
and (g(�2), µ(�2)), we expect the metric to accurately capture the ranking of generalization perfor-
mance. Specifically, if g(�1) < g(�2), then µ(�1) should also be less than µ(�2). This implies that
the metric µ effectively predicts relative generalization, with lower µ values corresponding to better
generalization (lower g). Consider lists of n generalization gaps and corresponding metrics, denoted
as G = [g1, . . . , gn] and M = [µ1, . . . , µn], where each gi and µi corresponds to g(�i) and µ(�i),
respectively. The Kendall rank correlation coefficient between G and M is given by

⌧(G,M) =
1

2n(n� 1)

X

i<j

[1 + sgn(gi � gj) sgn(µi � µj)] . (7)

This coefficient ranges from 0 to 1, where ⌧ = 1 indicates perfect agreement between the rankings of
g and µ (all pairs are concordant), and ⌧ = 0 indicates perfect disagreement (all pairs are discordant).

Figure 3 shows the mutual information (solid) and Kendall rank correlation coefficient (shaded)
between the generalization gap and various metrics. In both evaluation methods, margin-based
metrics demonstrate stronger correlations than parameter-based metrics, indicating that margins are
more effective in evaluating the generalization performance of QML models.

Consistent with previous analyses, we used inverse margin values to measure correlation, as larger
margins correspond to smaller generalization gaps. Further details on this experiment can be found
in Appendix A.2.

4 MARGINS AND QUANTUM EMBEDDING

Up to this point, we have focused on scenarios involving the classification of n-qubit quantum data
using QML models. Another important application of QML is the classification of classical data. To
work with classical data in a quantum framework, the d-dimensional data, x 2 Rd, must be mapped
to an n-qubit quantum state, represented by a density matrix ⇢(x) 2 C2n⇥2n . This process, known
as quantum embedding, typically involves applying a quantum embedding circuit Uemb to the ground
state, resulting in ⇢(x) = Uemb(x)(|0ih0|)⌦nU†

emb(x).
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Figure 4: A Tukey box-and-whisker plot illustrating the margin distributions of optimized 8-qubit
Quantum Convolutional Neural Networks (QCNNs). The plot shows results for QCNNs using fixed
quantum embedding (left), trainable quantum embedding (middle), and neural quantum embedding
(right). The QCNNs were trained on a binary classification task using the MNIST (bottom), Fashion-
MNIST (middle), and Kuzushiji-MNIST (top) datasets. In addition to the margin distributions, the
mean of the margins is indicated by a black cross, and the trace distance between ensemble quantum
states is marked by a red circle.

quantum embedding schemes. The comparison highlights how the initial trace distance affects
the margin distribution and the model’s generalization performance. Three quantum embedding
schemes are employed to vary the initial trace distance: the fixed quantum embedding (ZZ Feature
Map, described in Appendix A.2), TQE, and NQE.

As anticipated from previous research, we observed a progressively increasing trace distance (indi-
cated by a red dot) in the order of fixed quantum embedding, TQE, and NQE. This increase in trace
distance corresponds to higher margin mean values (indicated by a black cross). Larger margin
means, coupled with right-skewed margin distributions, are associated with improved test accura-
cies, aligning with the principles of margin-based generalization. In summary, using an optimal
quantum embedding with a large initial trace distance not only reduces sample training loss but
also results in larger margins and enhanced generalization. Experimental details are provided in
Appendix A.2.

5 DISCUSSION

In this work, we proposed a margin-based framework to better understand generalization in QML
models. We began by addressing the limitations of uniform generalization bounds, which have
proven ineffective when models overfit noisy labels in both classical and quantum settings. Drawing
inspiration from margin-based approaches in deep learning, we developed a margin generalization
bound for QNNs, offering tighter and more meaningful estimates of generalization performance.

Through extensive empirical studies, we demonstrated that margin-based metrics are highly pre-
dictive of generalization performance in QML models. Our experiments with QCNNs on the QPR
dataset revealed a strong correlation between margin distributions and generalization. Furthermore,
we compared margin-based metrics against parameter-based metrics for predicting the generaliza-
tion gap. In all settings, margin-based metrics proved to be better predictors of the generalization
gap, showing higher mutual information and Kendall rank correlation coefficients.

Additionally, we explored the connection between margin-based generalization and quantum state
discrimination, a fundamental concept in quantum information theory. We showed that quantum
embeddings with a large trace distance lead to larger margins, which in turn improve generaliza-
tion. By comparing different quantum embedding methods, we experimentally demonstrated that
embeddings with higher trace distances consistently result in better generalization performance.

Overall, our results suggest that margin-based metrics provide a more reliable and interpretable
framework for understanding generalization in QML models. This framework not only offers theo-
retical insights but also practical guidance for designing QML architectures that generalize well.
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• Established margin-based generalization bound for QML models. 
• Experimentally demonstrated strong correlation between generalization and margin. 
• Established connection between margins and quantum state discrimination.

Thank You


