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Bacckground: The Rate-Distortion-Perception tradeoff

Blau and Michaeli demonstrated the apparent tradeoff between the perceptual quality and the distortion measure
that widely exists in various distortion measures [1] (CVPR2018), and extended the classic rate-distortion tradeoff
to a triple tradeoff version [2] (ICML2019):

R(D,P)= min I (X; X)

p(|2)
st Epap(as ld@2)] <D, (1)
dp (Pz,ps) < P.

® They define the perceptual quality index
dp (pz, ps) based on some divergence between
distributions of the source and reconstructed
images (supported by GAN-based schemes).

® |t surpasses the support of Shannon's classical
information theory, thus shifting our focus to
semantic information theory [3] that focuses

on higher-level information processing [4]. Figure: An example presented by HifiC [5] (NeurlPS2020)

BPG: 0.446bpp| HIFIC™ (Ours): 0.198bpp
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A semantic information viewpoint
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Figure: An illustration of the optimization direction for Synonymous Variational Inference.
® Basic assumption: Images in an ideal synset X sharing the same latent synonymous representation y;.
¢ Optimization direction: Minimizing a partial semantic KL divergence, i.e., min Egp(2) DKL, s [q||pgs‘x].
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Synonymous Variational Inference: Derivation

Lemma

When the source considers the existence of an ideal synset X and the decoder places the reconstructed sample in a
reconstructed synset X, the minimization of the expected negative log synonymous likelihood term
min By (z)Egrg [— 108 Px g, (X]3s)]
<= min >‘d 0 EmNP(m)]Eg"’qui62|ﬂs [d (337 iz)} + )\p . ngquiei'h}S Dy [Pm”l’i,] ’

()

in which A4 and X, are the tradeoff factors for the expected distortion (typically expected means-squared error, i.e.,
E-MSE) term and the expected KL divergence (E-KLD) term, respectively.

v

By using the proposed SVI, i.e., minimizing the partial semantic KL divergence given in (?7),

0
Egrp(a)DKL,s [P, %] = Exmp(a)Egng W logpx|g, (X|Fs) —logpg, (§s) | +const.  (3)

Tradeoff in Lemma Rate

This target corresponds to a Synonymous Rate-Distortion-Perception Tradeoff, which can be shown as

Lx =X Egopa) [~1ogpg, (9s)] + Ad  Exnp@) s, c kg, [d (@ @)+ Ap By 315 Dx [p2llpa, ], (4)

Synonymous Coding Rate Expected Distortion Expected KL Divergence (Perception)
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Compatibility Analysis

® Compatibility with Existing Rate-Distortion-Perception Tradeoff: \When the reconstructed synset is not

considered (equal to the reconstructed synset contains only one sample, represented as X = {x}), the
optimization objective will be degraded into the existing rate-distortion-perception tradeoff:

R(X)= min I(X:X) R(D,P)= min I(X;X)
p( ) Ao} ()
s.t. ]Ewmzp(w)E@iej(‘gS [d (27 it)] <D, s.t. lEmNp(m) [d (:Z:,(i:)] <D, (5)
Eg,c kg, Okt [Pallpse;] < P, Dxu [p=|lpa] < P,

Compatibility with Traditional Rate-Distortion Tradeoff: When the ideal synset is not considered (equal to
the ideal synset contains only the original image, represented as X = {x}), the expected synonymous
likelihood term will be degraded into the usual likelihood term, i.e.,

x={=z}

Exnp(a)Egng [~ logpx|g, (X]3s)] Ezrp(e) [— 08 Pa)g (2|T)] (6)

Therefore, the relationship with the traditional rate-distortion tradeoff can be represented by
R(X)= min I (X;f()
p(X|@) x—(zy  R(D)= min I(X X)

Bt G2 N EIe
st EompaEs,cx)g, [d(@ #:)] <D

7 (7)
z; s PP
(*={=2}) sit. Epnp(a [d(z,2)] < D.
@162\1’15[“ [ISme@J <P

Z. Liang (BUPT) Synonymous Variational Inference for Perceptual Image Compression June 15, 2025

5|10



X nihexs

> Beljing University of Poss and Telecommuni

Framework of Synonymous Image Compression (SIC)
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Figure: Processing frameworks of SIC. (a) The general framework. (b) The progressive framework.

We implement a progressive SIC model, and optimize it with a group of loss functions that alternatively train for
the level [ = 1,2,--- , L step by step, i.e.:

O =ar) +(1-a) e +cM1=1,2,. 1, (8)
in which E‘(,? is represented by

M
1 . .
0= By [ g (3 2 35 (60 wse(eal) 42 1owsiea)] . 0

i=1
-
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Experimental lllustration: Results and Analysis
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We focus on the DISTS measure [6], due to its resampling tolerance, which aligns more closely with the human
understanding of perceptual similarity, i.e., typified synonymous relationships.
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Figure: Comparisons with methods [7, 8, 5, 9] using DISTS on different datasets.

0.6

Experimental results show perceptual quality adaptability across various rates using a single model, with the
perceptual quality of the reconstructed image improving as the coding rate increases.

For the concerned DISTS measure, our method surpasses the No-GAN MS-ILLM solution (also trained with
LPIPS) in a large coding rate range. This performance is demonstrated under conditions where the PSNR quality
continuously approaches and even exceeds the comparison No-GAN schemes, and the LPIPS quality remains very
similar, thus verifying a comparable rate-distortion-perception performance.
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Experimental lllustration: Results and Analysis
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Figure: Visualization results of reconstructed images at different synonymous levels using progressive SIC (M = 1).
Image from the CLIC2020 test set [10].

® |ow synonymous levels — Low coding rates — Large Synset — Focus more on global content semantic;
® High synonymous levels — High coding rates — Small Synset — Focus more on local detail semantic. J
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Thank you for your attention!



