

Perceptual-GS: Scene-adaptive Perceptual Densification for Gaussian Splatting

Hongbi Zhou¹, Zhangkai Ni¹

¹Tongji University

Background

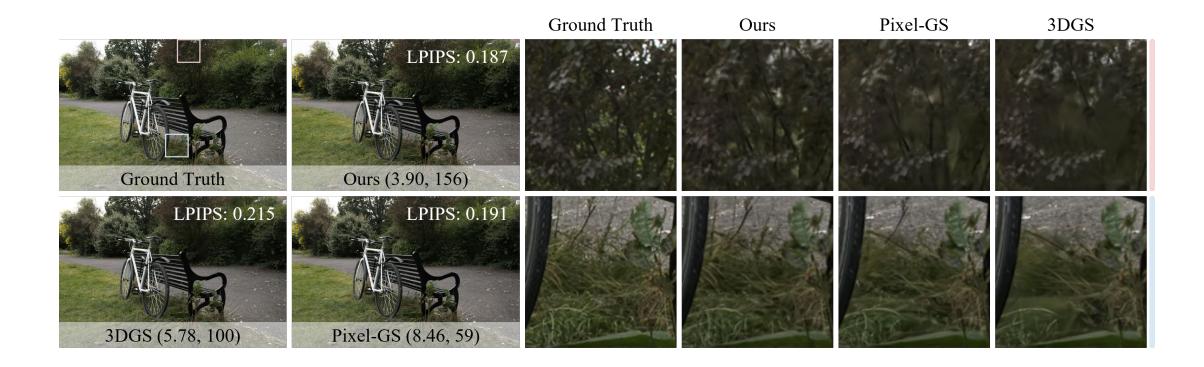
■ 3DGS-based novel view synthesis:

□ Densification operation in adaptive density control fails to distribute Gaussian primitives effectively in certain regions.

(a) Stump

(b) Flowers

(c) Treehill


■ Attempts on optimizing densification operation of 3DGS:

- ☐ Enhancing the calculation of position gradient of Gaussian primitives.
- ☐ Proposing additional metrics to select primitives to be densified.

Motivation

■ Achieving high-fidelity reconstruction without largely increasing rendering overhead is challenging:

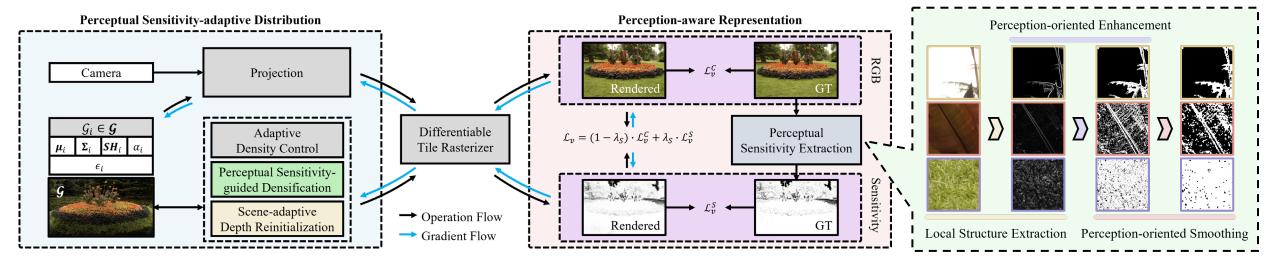
Motivation

■ Limited utilization of human perception makes subtle structures overlooked and reduces perceptual quality:

Motivation

■ The inability to adapt densification to scene-specific properties makes current approaches fail on certain scenes:

Contribution


- Perception-aware representation: Allowing each Gaussian primitive to adapt to perceptual sensitivity across different spatial regions through Perceptual Sensitivity Extraction and Dual-branch Rendering.
- Perceptual sensitivity-adaptive distribution: Allocating Gaussian primitives dynamically based on perceptual sensitivity in different areas through Perceptual Sensitivity-guided Densification and Scene-adaptive Depth Reinitialization.

■ State-of-the-art performance and generalizability: Perceptual-GS achieves state-of-the-art performance with fewer Gaussian primitives and can be integrated with other 3DGS-based methods.

Method

■ Perceptual-GS: Integrating multi-view perceptual sensitivity into the training process to optimize the distribution of Gaussian primitives.

☐ Gaussians to be densified in Perceptual Sensitivity-guided densification:

$$\mathbf{G}_D = \{\mathcal{G}_i | \omega_i^{max} > \tau^{\omega} \land i \in [1, N]\} \cap (\mathbf{G}_h \cup \mathbf{G}_m),$$

$$G_h = \{G_i | \epsilon_i > \tau_h \land i \in [1, N]\},\$$

$$\mathbf{G}_m = \{\mathcal{G}_i | \epsilon_i \in [\tau_l, \tau_h] \land i \in [1, N]\},\$$

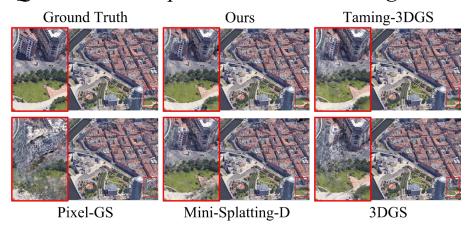
$$\omega_i^{max} = MAX(\{\sum_{\mathbf{u} \in pix_v} \omega_i^v(\mathbf{u}) | v \in \mathbf{V}\}).$$

■ Sensitivity map rendering:

$$\mathcal{R}_{v}^{S}(\boldsymbol{u}) = \sum_{i}^{N} \omega_{i}^{v}(\boldsymbol{u}) \sigma(\epsilon_{i})$$

Opacity decline for clone operation:

$$\hat{\alpha} = 1 - \sqrt{1 - OD(\alpha)}$$



■ Results on reconstruction quality:

a. Quantitative results in reconstruction quality.

Method	Mip-NeRF 360			Tanks & Temples			Deep Blending			BungeeNeRF		
1,10 v.10 v.	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM†	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
3DGS*	27.71	0.826	0.202	23.61	0.845	0.178	29.54	0.900	0.247	27.64	0.912	0.100
Pixel-GS*	27.85	0.834	0.176	23.71	0.853	0.152	28.92	0.893	0.250	OO	M in 1 so	cene
Mini-Splatting-D	27.51	0.831	0.176	23.23	0.853	0.140	29.88	0.906	0.211	25.58	0.861	0.149
Taming-3DGS	27.79	0.822	0.205	24.04	0.851	0.170	30.14	0.907	0.235	OOl	M in 2 sc	enes
Ours	28.01	0.839	0.172	23.90	0.857	0.151	29.94	0.907	0.231	27.86	0.918	0.095

b. Qualitative comparison results on BungeeNeRF.

- [5] Mallick, Saswat Subhajyoti, et al. "Taming 3DGS: High-quality Radiance Fields with Limited Resources." (SIGGRAPH Asia 2024).
- [6] Wang, Zhou, et al. "Image Quality Assessment: from Error Visibility to Structural Similarity." (TIP 2004).
- [7] Zhang, Richard, et al. "The Unreasonable Effectiveness of Deep Features as a Perceptual Metric." (CVPR 2018).
- [8] Knapitsch, Arno, et al. "Tanks and Temples: Benchmarking Large-scale Scene Reconstruction." (TOG 2017).
- [9] Hedman, Peter, et al. "Deep Blending for Free-viewpoint Image-based Rendering." (TOG 2018).
- [10] Xiangli, Yuanbo, et al. "BungeeneRF: Progressive Neural Radiance Field for Extreme Multi-scale Scene Rendering." (ECCV 2022).

■ Results on reconstruction efficiency:

c. Quantitative results in reconstruction efficiency.

Method	Mip-NeRF 360 Tanks & Temples Deep Blending BungeeNeRF								
	#G↓	FPS [↑]	#G↓	FPS [↑]	#G↓	FPS [↑]	#G↓	FPS [↑]	
3DGS*	3.14M	193	1.83M	247	2.81M	194	6.92M	69	
Pixel-GS*	5.23M	105	4.49M	101	4.63M	114	OOM i	n 1 scene	
Mini-Splatting-D	4.69M	120	4.28M	115	4.63M	159	6.08M	86	
Taming-3DGS	3.31M	122	1.84M	149	2.81M	130	OOM in	n 2 scenes	
Ours	2.69M	166	1.72M	218	2.86M	178	4.97M	89	

d. Effect of Opacity Decline and Dual-branch Rendering.

	PSNR↑	SSIM↑	LPIPS↓	#G↓
3DGS*	27.71	0.826	0.202	3.14M
+OD	27.74	0.825	0.207	2.22M
+OD +DBR	27.69	0.822	0.212	1.94M

■ Results of the proposed method integrating with different models:

e. Quantitative results on Mip-NeRF 360, Tanks & Temples and Deep Blending.

Method		Mip-No	eRF 360			Tanks &	Temples		Deep Blending			
Wiemod	PSNR↑	SSIM↑	LPIPS↓	#G↓	PSNR↑	SSIM↑	LPIPS↓	#G↓	PSNR↑	SSIM↑	LPIPS↓	#G↓
3DGS*	27.71	0.826	0.202	3.14M	23.61	0.845	0.178	1.83M	29.54	0.900	0.247	2.81M
w/ Ours	28.01	0.839	0.172	2.69M	23.90	0.857	0.151	1.72M	29.94	0.907	0.231	2.86M
Δ	+0.30	+0.013	-0.030	-0.45M	+0.29	+0.012	-0.027	-0.11M	+0.40	+0.007	-0.016	+0.05M
Pixel-GS*	27.85	0.834	0.176	5.23M	23.71	0.853	0.152	4.49M	28.92	0.893	0.250	4.63M
w/ Ours	28.01	0.841	0.167	3.37M	23.95	0.859	0.142	2.96M	29.71	0.901	0.233	3.59M
Δ	+0.16	+0.007	-0.009	-1.86M	+0.24	+0.006	-0.010	-1.53M	+0.79	+0.008	-0.017	-1.04M

g. Quantitative results on 24-view Mip-NeRF 360.

	PSNR↑	SSIM↑	LPIPS↓
CoR-GS*	22.26	0.664	0.341
w/Ours	22.42	0.681	0.281
Δ	+0.16	+0.017	-0.060

f. Quantitative results on BungeeNeRF.

Method	BungeeNeRF			Pompidou			Chicago			Amsterdam						
21204204	PSNR↑	SSIM†	LPIPS↓	#G↓	PSNR↑	SSIM†	LPIPS↓	#G↓	PSNR↑	`SSIM†	LPIPS↓	#G↓	PSNR↑	SSIM†	LPIPS↓	#G↓
3DGS*	27.64	0.912	0.100	6.92M	27.00	0.916	0.095	9.11M	27.97	0.927	0.086	6.32M	27.60	0.913	0.100	6.19M
w/ Ours	27.86	0.918	0.095	4.97M	27.18	0.922	0.089	6.12M	28.39	0.933	0.081	4.48M	27.89	0.922	0.087	4.96M
Δ	+0.22	+0.006	-0.005	-1.95M	+0.18	+0.006	-0.006	-2.99M	+0.42	+0.006	-0.005	-1.84M	+0.29	+0.009	-0.013	-1.23M
Pixel-GS*	¢	OOM in	1 scene	2		OC	OM		27.52	0.921	0.090	9.76M	27.76	0.916	0.095	10.26M
w/ Ours	27.64	0.913	0.100	5.92M	27.01	0.918	0.092	7.39M	28.36	0.930	0.081	5.58M	27.98	0.922	0.085	6.60M
Δ	_		_	_	_	_	_	_	+0.84	+0.009	-0.009	-4.18M	+0.22	+0.006	-0.010	-3.66M

■ Ablation study:

h. Ablation studies on different modules.

	PSNR↑	SSIM↑	LPIPS↓	#G↓
FULL	28.01	0.839	0.172	2.69M
3DGS*	27.71	0.826	0.202	3.14M
w/o PE	27.74	0.825	0.204	2.09M
w/o HD	27.74	0.826	0.204	2.02M
w/o MD	27.86	0.831	0.179	2.56M
w/o SDR	27.93	0.832	0.176	2.68M
w/o OD	27.99	0.839	0.172	3.25M

i. Ablation studies on hyperparameters.

H.P.	Value	PSNR↑	SSIM↑	LPIPS↓	#G↓
λ_S	0.1 0.3 0.5	28.01 27.82 27.48	0.839 0.835 0.823	0.172 0.181 0.196	2.69M 2.10M 1.92M
$ au_h^\omega$	10	28.05	0.841	0.166	3.61M
	15	28.00	0.840	0.169	3.09M
	25	28.01	0.839	0.172	2.69M
$ au_m^\omega$	10	28.01	0.839	0.172	2.69M
	15	27.98	0.838	0.173	2.65M
	25	27.97	0.838	0.174	2.63M
$Iter_h$	1000	28.01	0.839	0.172	2.69M
	1500	27.95	0.838	0.174	2.57M
	2000	27.93	0.837	0.175	2.52M
$Iter_m$	1000	27.92	0.839	0.172	2.70M
	1500	28.01	0.839	0.172	2.69M
	2000	27.98	0.839	0.173	2.66M

Code: https://github.com/eezkni/Perceptual-GS

