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Main contribution

Score-matching diffusion models can generate highly original images that lie far from their training
data. However, optimal score-matching theory suggests that these models should only be able to
produce memorized training examples. To understand how diffusion models can exhibit ‘creative’
characteristics, we need to understand why the underfit their training objective, and what they do
instead. We study the problem of approximating the score using Fully-Convolutional Diffusion
Models. These models have two key implicit biases:

Translational equivariance: applying the model to a translated version of an input image
results in an equally translated output.
Locality: the convolutional filters used are typically very narrow. For a finite-depth network, this
means that only the pixels in a local region around the pixel can be used to estimate the noise.

We develop an analytic theory of optimal score-matching under these constraints. The resulting
solution is:

Inherently ‘creative,’ automatically mixing and matching elements of the training data rather
than memorizing.
Highly predictive of the behavior of trained diffusion models, achieving SOTA
theory/experiment of r2 ∼ 0.77 − 0.96, typically > 0.90, across different architectures and
datasets.

Theory

Diffusion models are trained by taking training images, ‘diffusing’ them by adding noise, and then
training a model to denoise the image by evolving images uphill along the ‘score:’ the log-probability
gradient st(ϕ) = ∇ log πt(ϕ).

The ideal score (IS) can be written as a linear combination of the displacement from each
training sample, times a global Bayes weight for each data point:

st(ϕ, x) ∝
∑

φ︸︷︷︸
sum over data

(ϕ(x) − φ(x))︸ ︷︷ ︸
displacement

P(φ|ϕ)︸ ︷︷ ︸
Bayes weight

(1)

The ideal local approximation to the score (LS): each pixel x has its own belief state about
which image it came from, based only on the information in its local neighborhood, Ωx .

st(ϕ, x) ∝
∑

φ︸︷︷︸
sum over data

(ϕ(x) − φ(x))︸ ︷︷ ︸
displacement

P(φ|ϕ ∈ Ωx )︸ ︷︷ ︸
local Bayes weight

(2)

The ideal equivariant, local approximation to the score (ELS): dataset augmented with all
possible translations of the original dataset.

st(ϕ, x) ∝
∑
T (φ)︸︷︷︸

sum over data + translations

(ϕ(x) − φ(x))︸ ︷︷ ︸
displacement

P(φ|ϕ ∈ Ωx )︸ ︷︷ ︸
local Bayes weight

(3)

Key takeaway:
Under the ideal score, all pixels share the same belief state, and move in lockstep towards most
probable image.
Under a local approximation to the score, pixel beliefs decouple. Each pixel moves uphill towards
the locally most probable image, resulting in images that mix and match training set patches.

The ‘pixel mosaic’ model

Whereas optimal denoising is guaranteed to produce exact copies of the training data, optimal local
denoising is guaranteed to produce images consisting of locally consistent points, where the center
pixel of each patch matches the center pixel of the l2-nearest patch in the training set.

A time-dependent locality scale and the curse of dimensionality

Our theory has one hyperparameter: the locality scale at each time in the reverse process. We find
empirically that neural networks use a coarse-to-fine procedure, with large scales at high noise
levels and small scales at low noise. The time-dependent locality scale provides a key mechanism
by which these models can avoid the curse of dimensionality and memorization. By projecting
to progressively lower dimensional subspaces, the data stay ‘close together’ at any level of noise,
ensuring that new points are ‘in distribution’ and preventing the belief state from localizing to any
one data point (i.e. memorizing).

Figure 1. Left: receptive field sizes for different models at different times in the reverse process. Middle:
Optimal scales monotonically decrease as the noise level decreases across all models and datasets. Right:
schematic depiction of time-dependent locality scale.

Figure 2. As the noise level decreases, the locality scale must be decreased commensurately in order to ensure
that the model does not transition to a pathological memorizing state.

The local origin of excess limbs

Spatial consistency issues (e.g. incorrect numbers of digits and limbs) are ubiquitous in diffusion
models. Our theoretical model reproduces these behaviors and explains them as a consequence of
excessive locality.

Samples

Figure 3. Our analytic theory (left columns) can accurately predict on a case by case basis the outputs of
convolutional diffusion models (right columns), with UNet or ResNet architectures trained on MNIST,
CIFAR10, FashionMNIST, and CelebA (left to right), even when these outputs are highly original and far from
the training data.

Figure 4. In practice, our theory is also moderately predictive (r2 ∼ 0.77) of a (small, simple) Attention-enabled
model on CIFAR10. However, self-attention enables the model to ‘carve out’ semantically coherent foreground
objects.

Dataset Arch. ELS Corr. LS Corr. IS Corr.
MNIST UNet 0.89 0.88 0.70

CIFAR10 UNet 0.90 0.87 0.41
FashionMNIST UNet 0.93 0.93 0.80

CelebA UNet 0.85 0.90 0.55

MNIST ResNet 0.94 0.82 0.61
CIFAR10 ResNet 0.95 0.90 0.42

FashionMNIST ResNet 0.94 0.88 0.68
CelebA ResNet 0.96 0.90 0.47

CIFAR10 UNet + SA 0.77 0.77 0.48

Table 1. A summary of the experimental results of the paper for different datasets and model configurations for
each architecture across each dataset.


