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Zero-Shot Multi-Domain Transfer Learning

Challenges

 Sim-to-Real gap: discrepancy between target and source domains

 Negative transfer: misleading information contributed by irrelevant source domains

 Privacy: raw data sharing is prohibited

Goal

Transfer knowledge from diverse and heterogeneous environments without access to target domain
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Problem Formulation
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The goal of zero-shot transfer learning is to optimize the 

performance under    , which is not accessible for training0P

There are related source domains within an uncertainty set 

centered at     with radius 0P R
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Research Methodology

Central Server: collects and aggregates information from source 

domains and distributes updates back to local agents

Local Agents: performs robust learning based on the received 

updates and returns a conservative proxy to the central server

The local uncertainty set for each agent is constructed to contains
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Average Operator-Based Proxy

Robust Local Updates:

Global Aggregation:

( )
(1 ) ( ( , ) ( ))( , ) ( , ) a

k s
k k kQ sQ r s as a a V     

1

1
( , ) ( , )

K

k
k

Q s a Q s a
K 

 



University of Central Florida Page 6

Average Operator-Based Proxy

The proxy yields a lower bound on the performance of the policy under the target environment

The proxy is less conservative than proximal robust domain randomization (a direct extension 

of domain randomization)

By reducing the aggregation frequency, the convergence rate of our method enjoys a partial 

linear speedup w.r.t. the number of the agents
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Minimal Pessimism Principle

Robust Local Updates:

Global Aggregation:
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Minimal Pessimism Principle

The proxy yields a lower bound on the performance of the policy under the target environment

The proxy is less conservative than the robust value function of any source domain and the

average operator-based proxy, and hence avoids negative transfer

By reducing the aggregation frequency, the convergence rate of our method enjoys a partial 

linear speedup w.r.t. the number of the agents
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Experimental Results

Recycling Robot
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Experimental Results

Effect of Negative Transfer
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Thanks for Watching!


