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Research Question

What is the best algorithm for fair regression?

best = minimax optimal, fair = demographic parity
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Fair Regression

® For each group s € [M]:
e X (%): non-sensitive features (X')
e Y (): outcome on (2 C R open, bounded)
* Goal: Given n, i.i.d. copies of (X®), Y(*)) for each s € [M],
construct an accurate and fair regressor f..

* Fairness:
P, {f(X®) e B} =P, {fs (X)) € E}

o Accuracy

= 3w [ (2G) = Fiol2) xald)

s€[M]
] f* Fair Bayes-optimal regressor (closest to Bayes-optimal,
subject to demographic parity)



Minimax Optimal Fair Regression

¢ Fair minimax optimal error:
En(P) = inf sup Eye (2 (Fos )],
® sup: over all distributions i, € P
e inf: over all fair regression algorithms fn
¢ Fair minimax optimal regression algorithm:
® Achieves the minimax optimal error above
® Guarantees the smallest possible error in the worst case



Existing Work

Fair minimax optimal algorithms have been developed for specific
data generation models P:

| Task P
Chzhen et al. ( ) Regression Llngar W./
additive bias
Linear w/
Fukuchi et al. ( ) | Regression  group-dependent
coefficients

Holder class /w
Zeng et al. ( ) Classification  margin & density
conditions
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Key Limitation:
e Methods are tailored to their assumed P.

® Generalizing to other models demands new theoretical
analysis.



Contributions: Meta-Optimality

Standard minimax
optimal regression

Holder!
Sobolev!
Besov? Meta theorem Fair
Hierarchical Holder with po.st— minimax
W/ ReLU Net3 processing ophmal
. . fair regressions regression
Hierarchical
Anisotropic Besov
w/ ReLU Net*
! (Giné et al. 2015), 2 (Donoho et al. 1995), ® (Schmidt-Hieber 2020), 4 (Suzuki et al.

Developed a meta-theorem showing that post-processing
standard minimax optimal regressors yields fair minimax

optimality.

)



Summary

¢ Studied minimax optimal regression under demographic
parity constraints.

® Proved a meta-optimality theorem for post-processing fair
regression: this approach inherits minimax optimality from
standard regression algorithms, enabling broad applicability
across diverse settings.

Check out my poster for details!
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