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Unfairness in Machine Learning

• Real-world ML systems can be unfair:

• Criminal risk assessment (Angwin et al. 2016)

• Hiring (Dastin 2018)

• Facial recognition (Crockford 2020; Najibi 2020)

• Credit scoring (Vigdor 2019)

• These cases underscore the need for fairmodels.

• Many approaches exist to address different fairness

criteria (Feldman et al. 2015; Chzhen et al. 2020; Chen et al.

2023; Jovanović et al. 2023; Khalili et al. 2023; Xian et al.

2023; Xu et al. 2023)

Research Question

What is the best algorithm for fair regression?

best = minimax optimal, fair = demographic parity
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Fair Regression

• For each group s ∈ [M ]:
• X(s): non-sensitive features (X )

• Y (s): outcome on Ω (Ω ⊂ R open, bounded)

• Goal: Given ns i.i.d. copies of (X(s), Y (s)) for each s ∈ [M ],
construct an accurate and fair regressor f:.

• Fairness:
Pµs{fs(X(s)) ∈ E} = Pµs′ {fs′(X(s′)) ∈ E}

• Accuracy:
d2

µX,:(f:, f̄∗
µ,:) =

∑
s∈[M ]

ws

∫ (
fs(z) − f̄∗

µ,s(z)
)2

µX,s(dz)

• f̄∗
µ,:: Fair Bayes-optimal regressor (closest to Bayes-optimal,
subject to demographic parity)
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Minimax Optimal Fair Regression

• Fair minimax optimal error:
Ēn(P) = inf

f̄n,::fair
sup
µ:∈P

Eµn
: [d2

µX,:(f̄n,:, f̄∗
µ,:)],

• sup: over all distributions µ: ∈ P
• inf : over all fair regression algorithms f̄n,:

• Fair minimax optimal regression algorithm:
• Achieves the minimax optimal error above

• Guarantees the smallest possible error in the worst case
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ExistingWork

Fair minimax optimal algorithms have been developed for specific

data generation models P :

Task P

Chzhen et al. (2022) Regression
Linear w/

additive bias

Fukuchi et al. (2023) Regression

Linear w/

group-dependent

coefficients

Zeng et al. (2024) Classification

Hölder class /w

margin & density

conditions

Key Limitation:

• Methods are tailored to their assumed P .

• Generalizing to other models demands new theoretical

analysis.
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Contributions: Meta-Optimality

Meta theorem

with post-

processing

fair regressions

Hölder1

Sobolev1

Besov2

Hierarchical Hölder

w/ ReLU Net3

Hierarchical

Anisotropic Besov

w/ ReLU Net4

Standard minimax

optimal regression

Fair

minimax

optimal

regression

1 (Giné et al. 2015), 2 (Donoho et al. 1998), 3 (Schmidt-Hieber 2020), 4 (Suzuki et al. 2021)

Developed a meta-theorem showing that post-processing

standard minimax optimal regressors yields fair minimax

optimality.
6



Summary

• Studied minimax optimal regression under demographic

parity constraints.

• Proved a meta-optimality theorem for post-processing fair

regression: this approach inherits minimax optimality from

standard regression algorithms, enabling broad applicability

across diverse settings.

Check out my poster for details!
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