

One-Pass Feature Evolvable Learning with Theoretical Guarantees

Cun-Yuan Xing, M.-Z. Qian, W.-Y. Chen, W. Gao and Z.-H. Zhou

National Key Laboratory for Novel Software Technology, Nanjing University

- ☐ Introduction
- ☐ Our Work
 - ☐ Kernel Ortho-Mapping discrepancy
 - ☐ Our OPFES approach
- Experiments
- □ Conclusion

Feature evolvable learning: old features will vanish and new features will emerge when learning with data streams [Hou et al., 2021; Zhang et al., 2021]

In environmental monitoring, different sensors collect different features

New features are deployed

Previous feature evolvable methods consider different relationship

- FESL [Hou et al., 2017] considers linear relationship for feature space
- SF²EL [Hou et al., 2021] takes kernel relationship for feature space
- OCDS [He et al., 2023] leverage linear relationship with graphical model
- ...

About this work

Fundamental problems

- How to characterize the relationships between two different feature spaces
- How to exploit those relationships for feature evolvable learning

In this work, we propose

- ➤ **Kernel Ortho-Mapping (KOM) discrepancy** to characterize the relationships between two feature spaces via kernel functions
- > OPFES: one-pass algorithm which incorporates feature and label relationships via KOM discrepancy

- Introduction
- □ Our Work
 - **□** Kernel Ortho-Mapping discrepancy
 - ☐ Our OPFES approach
- Experiments
- □ Conclusion

Our characterization for feature space

- Kernels are introduced to represent feature spaces
 - $\mathcal{K}^{[1]} \to \text{old feat. space } \mathcal{X}^{[1]} \quad \text{and} \quad \mathcal{K}^{[2]} \to \text{new feat. space } \mathcal{X}^{[2]}$
- For sample $S_n = \{(x_i^{[1]}, x_i^{[2]})\}_{i=1}^n \in (\mathcal{X}^{[1]} \times \mathcal{X}^{[2]})^n$, define Gram matrices

$$\mathbf{K}^{[1]} = \left[\mathcal{K}^{[1]} \left(\mathbf{x}_i^{[1]}, \mathbf{x}_j^{[1]} \right) \right]_{n \times n} \quad \text{and} \quad \mathbf{K}^{[2]} = \left[\mathcal{K}^{[2]} \left(\mathbf{x}_i^{[2]}, \mathbf{x}_j^{[2]} \right) \right]_{n \times n}$$

We define the **Kernel Ortho-Mapping Discrepancy** over S_n as

$$\hat{\mathcal{E}}(S_n, \mathcal{K}^{[1]}, \mathcal{K}^{[2]}) = \min_{\mathbf{U}\mathbf{U}^{\top} = \mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_n} \left\{ \left\| \mathbf{U}\sqrt{\mathbf{K}^{[1]}} - \sqrt{\mathbf{K}^{[2]}} \right\|_F / \sqrt{n} \right\}$$

- ◆ Dimensionality alignment via empirical kernel mapping for different feature space
- ◆ Minimization for the uniqueness of kernel mapping from rotational invariance

Our characterization for feature space

Lemma We have, for sample S_n

$$\hat{\mathcal{E}}\left(S_n, \mathcal{K}^{[1]}, \mathcal{K}^{[2]}\right) = \left(\text{Tr}(\mathbf{K}^{[1]} + \mathbf{K}^{[2]})/n - 2\|\sqrt{\mathbf{K}^{[1]}}\sqrt{\mathbf{K}^{[2]}}\|_*/n\right)^{1/2}$$

KOM discrepancy and optimal classifiers

Old feat. space: optimal classifier
$$h_*^{[1]} \in \underset{h \in \mathcal{H}^{[1]}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^n \ell(h,(\boldsymbol{x}_i^{[1]},y_i))/n + \frac{\lambda}{2} \|h\|_{\mathcal{H}^{[1]}}^2 \right\}$$

New feat. Space: optimal classifier $h_*^{[2]} \in \underset{h \in \mathcal{H}^{[2]}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^n \ell(h,(\boldsymbol{x}_i^{[2]},y_i))/n + \frac{\lambda}{2} \|h\|_{\mathcal{H}^{[2]}}^2 \right\}$

Theorem We have, for sample S_n ,

$$\hat{\rho}_{S_n}(h_*^{[1]}, h_*^{[2]}) = \frac{1}{n} \sum_{i=1}^n |h_*^{[1]}(\boldsymbol{x}_i^{[1]}) - h_*^{[2]}(\boldsymbol{x}_i^{[2]})| \le \frac{r}{\lambda} \underbrace{\hat{\mathcal{E}}(S_n, \mathcal{K}^{[1]}, \mathcal{K}^{[2]})} + \frac{r}{\lambda} \sqrt{2r \underline{\hat{\mathcal{E}}}(S_n, \mathcal{K}^{[1]}, \mathcal{K}^{[2]})}$$

Distance between two optimal classifiers KOM discrepancy

KOM discrepancy

New insights: feature evolvable algorithm by optimizing KOM discrepancy

Positive relevance

Comparison with previous characterization

Previous characterization:

• kernel alignment[Cortes et al., 2012] $\hat{A}(\mathbf{K}^{[1]}, \mathbf{K}^{[2]}) = \frac{\operatorname{Tr}(\mathbf{K}^{[1]}\mathbf{K}^{[2]})}{\|\mathbf{K}^{[1]}\|_F \|\mathbf{K}^{[2]}\|_F}$

Lemma For kernel alignment, we have

$$\hat{\mathcal{E}}(S_n, \mathcal{K}^{[1]}, \mathcal{K}^{[2]}) \le r \sqrt[4]{2(1 - \hat{A}(\mathbf{K}^{[1]}, \mathbf{K}^{[2]}))}$$
.

 $\bullet \quad \boldsymbol{\ell_2} \,\, \textbf{distance} \,\, [\textbf{Heo et al., 2019}] \,\, L_2(S_n) = \min_{\boldsymbol{\varphi}^{[2]} \in \mathcal{F}} \left\{ \sum_{i=1}^n \left\| \boldsymbol{\varphi}^{[1]}(\boldsymbol{x}_i^{[1]}) - \boldsymbol{\varphi}^{[2]}(\boldsymbol{x}_i^{[2]}) \right\|_2^2 / n \right\}$

Lemma We have

$$\hat{\mathcal{E}}(S_n, \mathcal{K}^{[1]}, \mathcal{K}^{[2]}) \le \sqrt{L_2(S_n)} .$$

A smaller difference between two optimal classifiers by optimizing KOM discrepancy

Learning And Mining from DatA

- Introduction
- ☐ Our Work
 - ☐ Kernel Ortho-Mapping discrepancy
 - **□** Our OPFES approach
- Experiments
- Conclusion

Three stages for feature evolvable learning

- ① Previous stage: receive instances $x_t^{[1]}$ from the old space $\mathcal{X}^{[1]}$ for $t = 1, \dots, T_1$;
- ② Evolving stage: receive instances $x_t^{[1]}$ and $x_t^{[2]}$ from $\mathcal{X}^{[1]}$ and $\mathcal{X}^{[2]}$ respectively for $t = T_1 + 1, \dots; T_1 + T_e$;
- Feature evolution

 Old feature space $\mathcal{X}^{[1]}$ New feature space $\mathcal{X}^{[2]}$ Instances $\boldsymbol{x}_t^{[1]}$ from Previous stage old feature space $\mathcal{X}^{[1]}$ from feature spaces $\mathcal{X}^{[1]}$ and $\mathcal{X}^{[2]}$ T_2 Instances $(\boldsymbol{x}_t^{[1]}, \boldsymbol{x}_t^{[2]})$ from feature spaces $\boldsymbol{x}_t^{[1]}$ and $\mathcal{X}^{[2]}$ T_2 Instances $\boldsymbol{x}_t^{[2]}$ from new feature space $\mathcal{X}^{[2]}$
- ③ Current stage: receive instances $x_t^{[2]}$ from new space $\mathcal{X}^{[2]}$ for $t = T_1 + T_e + 1, \dots, T_1 + T_e + T_2$.

1 In previous stage, we consider random Fourier features [Rahimi & Recht, 2008]

$$\mathcal{K}(\boldsymbol{x}_i, \boldsymbol{x}_j) \approx \sum_{k=1}^d p(\boldsymbol{u}_k) \phi(\boldsymbol{x}_i, \boldsymbol{u}_k, b_k) \phi(\boldsymbol{x}_j, \boldsymbol{u}_k, b_k) = \langle \boldsymbol{z}(\boldsymbol{x}_i), \boldsymbol{z}(\boldsymbol{x}_j) \rangle$$

and take one-pass learning algorithm to update model

$$m{w}_t^{[1]} = m{w}_{t-1}^{[1]} - au_t^{[1]}
abla \ell_t^{[1]} (m{w}_{t-1}^{[1]})$$

- ② In the evolving stage of sample $S_{T_e}^{[e]} = \{(x_t^{[1]}, x_t^{[2]})\}_{t=T_1+1\cdots T_1+T_e}$
 - Incorporate feature information by learning $\mathcal{K}^{[2]}$

$$\mathcal{K}^{[2]} \in \operatorname*{arg\,min}_{\mathcal{K}} \left\{ \hat{\mathcal{E}}(S_{T_e}^{[e]}, \mathcal{K}^{[1]}, \mathcal{K}) \right\}$$

• Incorporate label information by learning \mathcal{K}^l

$$\mathcal{K}^l \in \operatorname*{arg\,min}_{\mathcal{K}} \left\{ \hat{\mathcal{E}}(S_{T_e}^{[e]}, \mathcal{K}^*, \mathcal{K}) \right\} \qquad \mathcal{K}^*(\mathbf{x}, \mathbf{x}') = \mathbf{y}\mathbf{y}'$$

Reuse previous model

$$m{w}_{T_1 + T_e}^{[2]} = m{U}_*^ op m{w}_{T_1}^{[1]} \,, \quad m{U}_* \in rg \min_{m{U} \in \mathcal{U}_{d_1}} \left\{ \left\| m{U} m{(z^{[1]}} (m{x}_{T_1 + i}^{[1]}) ig)_{i=1}^{T_e} - m{(z^{[2]}} (m{x}_{T_1 + i}^{[2]}) ig)_{i=1}^{T_e}
ight\|_F
ight\}$$

- ③ In the current stage,
 - An Online model $h_t^{[2]}(\boldsymbol{x}^{[2]}) \approx \langle \boldsymbol{w}_t^{[2]}, \boldsymbol{z}^{[2]}(\boldsymbol{x}^{[2]}) \rangle$ via random features over $\mathcal{K}^{[2]}$ and update $\boldsymbol{w}_t^{[2]} = \boldsymbol{w}_{t-1}^{[2]} \tau_t^{[2]} \nabla \ell_t^{[2]}(\boldsymbol{w}_{t-1}^{[2]})$
 - Another online model $h_t^l(x^{[2]}) \approx \langle w_t^l, z^l(x^{[2]}) \rangle$ via random features over \mathcal{K}^l and update

$$oldsymbol{w}_t^l = oldsymbol{w}_{t-1}^l - au_t^l
abla \ell_t^l(oldsymbol{w}_{t-1}^l)$$

Online ensemble classifier

$$h_t(\boldsymbol{x}_t^{[2]}) = \omega_t \langle \boldsymbol{w}_t^{[2]}, \boldsymbol{z}^{[2]}(\boldsymbol{x}_t^{[2]}) \rangle + (1 - \omega_t) \langle \boldsymbol{w}_t^l, \boldsymbol{z}^l(\boldsymbol{x}_t^{[2]}) \rangle$$

Algorithm 2 The OPFES method

Input: Feature evolvable stream sample $S_{T_1+T_e+T_2}$, kernel

 $\mathcal{K}^{[1]}$, stepsize $\tau_t^{[1]}, \tau_t^{[2]}$ and τ_t^l , sensitivity parameter γ

Initialize: $w_0^{[1]} = 0$

Output: classifier $h_{T_1+T_e+T_2}$

- 1: Obtain random Fourier features $(\boldsymbol{u}_{k}^{[1]}, b_{k}^{[1]})_{k=1}^{d_{1}}$ and $(\boldsymbol{u}_{k}^{[2]}, b_{k}^{[2]}, \boldsymbol{u}_{k}^{l}, b_{k}^{l})_{k=1}^{d_{2}}$ via Eqn. (1)
- 2: **for** $t = 1, \dots, T_1$ **do**
- 3: Update $w_t^{[1]}$ by online gradient descent in Eqn. (2) One-pass online kernel learning
- 4: end for
- 5: Obtain $p^{[2]}$ and p^l from Algorithm 1 Feature and label information incorporation
- 6: Compute $w_{T_1+T_2}^{[2]}$ by Eqn. (11) Previous model reuse
- 7: **for** $t = T_1 + T_e + 1, \dots, T_1 + T_e + T_2$ **do**
- 8: Update $w_t^{[2]}$ and w_t^l by Eqns. (9)-(10), respectively Learn two online models
- 9: Update the combined classifier h_t by Eqn. (12) Prediction with online ensemble
- 10: **end for**
- 11: **return:** classifier $h_{T_1+T_e+T_2}$

Convergence guarantee

Theorem The following holds with probability at least $1 - \delta$ (0 < δ < 1),

$$\frac{1}{T_2} \sum_{t=T_1+T_e+1}^{T_1+T_e+T_2} \left(\ell_t^{[2]}(\boldsymbol{w}_t^{[2]}) - \ell_t^{[2]}(\boldsymbol{w}_*^{[2]}) \right) \\
\leq \frac{4r^2}{\lambda\sqrt{T_2}} \left(\frac{\mathcal{E}}{r} + \sqrt{\frac{\mathcal{E}}{r}} \right)^{1/2} + \frac{c_2r^2}{\lambda\sqrt{T_2}} \left[\left(\frac{1}{\sqrt{T_1}} + \frac{1}{\sqrt{T_e}} + \frac{1}{\sqrt[4]{T_2}} \right) \sqrt{\ln\frac{6}{\delta}} \right]^{1/2}$$

- We obtain a tighter bound as for closer feature relationship
- ➤ It is useful to exploit information and model from old feature space

- Introduction
- ☐ Our Work
 - ☐ Kernel Ortho-Mapping discrepancy
 - ☐ Our OPFES approach
- Experiments
- □ Conclusion

Benchmark datasets

Dataset	# Inst.	# Feat.	Dataset	# Inst.	Feat.
jungle	2351	87	usps	9298	25
splice	3175	60	aileron	13750	40
bioresponse	3751	1776	elevators	16599	18
christine	5418	1636	pol	15000	44
svmguide1	7089	4	magic	19020	10

Large-scale datasets

Dataset	# Inst.	# Feat.	Dataset	# Inst.	# Feat.
letter	20000	16	nomao	34465	118
house	22784	16	adult	48842	108
acoustic	78823	50	runwalk	88588	6
higgs	98049	28	miniboone	130064	50
ijenn1	141691	22	covtype	581012	54

Compared methods

- lin-ROGD: linear model, ℓ_2 distance for feature relationship [Hou et al., 2017]
- lin-FESL: lin-ROGD + linear model learned from scratch [Hou et al., 2021]
- ker-ROGD: kernel model, ℓ_2 distance for feature relationship [Hou et al., 2021]
- ker-FESL: ker-ROGD + kernel model learned from scratch [Hou et al., 2021]
- OCDS: linear model, generative graphical model for feature relationship [He et al., 2021]

Additional compared methods

- rff-ROGD: random feature model, ℓ_2 distance for feature relationship [Lu et al., 2016]
- rff-FESL: rff-ROGD + random feature model learned from scratch [Hou et al., 2021]
- align-FESL: random feature model, kernel alignment for feature and label relationship [Sinha & Duchi, 2016]

"+" stands for online ensemble

Results

Dataset	Our OPFES	lin-FESL	lin-ROGD	OCDS
jungle	$.0097 \pm .0047$	$.1084 \pm .0152 \bullet$	$.1471 \pm .0144 \bullet$.1106 ± .0138•
splice	$.3070 \pm .0079$	$.3447 \pm .0097 \bullet$.4307 ± .0213•	$.3547 \pm .0156 \bullet$
bioresponse	$.2763 \pm .0117$.2938 ± .0093•	.3684 ± .0102•	$.2951 \pm .0112 \bullet$
christine	0.3192 ± 0.0095	$.3443 \pm .0098 \bullet$	$.3439 \pm .0098 \bullet$	$.3663 \pm .0116 \bullet$
svmguide1	$1.1614 \pm .0052$	$.2399 \pm .0062 \bullet$	$.2451 \pm .0102 \bullet$	$.2442 \pm .0070 \bullet$
usps	$.1684 \pm .0044$	$.2654 \pm .0081 \bullet$	$.2839 \pm .0073 \bullet$	$.2746 \pm .0085 \bullet$
aileron	$.1963 \pm .0034$	$.2466 \pm .0066 \bullet$	$.2465 \pm .0066 \bullet$	$.3026 \pm .0047 \bullet$
pol	$.0654 \pm .0036$	$.1484 \pm .0035 \bullet$	$.1655 \pm .0041 \bullet$	$.1515 \pm .0038 \bullet$
elevators	$.2422 \pm .0039$	$.3073 \pm .0043 \bullet$	$.3045 \pm .0040 \bullet$	$.3073 \pm .0042 \bullet$
magic	$.2154 \pm .0039$	$.2535 \pm .0040 \bullet$	$.2988 \pm .0073 \bullet$	$.2554 \pm .0045 \bullet$
letter	$.1354 \pm .0043$	$.3380 \pm .0038 \bullet$	$.3565 \pm .0071 \bullet$	$.3390 \pm .0034 \bullet$
house	$.1849 \pm .0040$	$.2623 \pm .0084 \bullet$	$.2658 \pm .0120 \bullet$	$.2853 \pm .0037 \bullet$
nomao	$.0646 \pm .0026$	$.0860 \pm .0019$ \bullet	$.1107 \pm .0039 \bullet$	$.0882 \pm .0023 \bullet$
adult	$.1875 \pm .0023$	$.2050 \pm .0033 \bullet$	$.2036 \pm .0042 \bullet$	$.2303 \pm .0026 \bullet$
acoustic	$.3074 \pm .0024$	$.4321 \pm .0079 \bullet$	$.4317 \pm .0075 \bullet$	$.4668 \pm .0022 \bullet$
runwalk	$.2602 \pm .0033$	$.4945 \pm .0021 \bullet$	$.4963 \pm .0033 \bullet$	$.4972 \pm .0027 \bullet$
higgs	$.3946 \pm .0045$	$.4309 \pm .0028 \bullet$	$.4481 \pm .0139 \bullet$	$.4366 \pm .0021 \bullet$
miniboone	$.1602 \pm .0036$	$.2384 \pm .0039 \bullet$	$.2384 \pm .0039 \bullet$	$.2803 \pm .0011 \bullet$
ijcnn1	$.0616 \pm .0115$	$.0951 \pm .0007 \bullet$	$.0957 \pm .0009 \bullet$	0.0957 ± 0.0009
covtype	$.3782 \pm .0008$	$.3790 \pm .0007 \bullet$	$.3920 \pm .0034 \bullet$	$.3792 \pm .0007 \bullet$
Win/Tie/Loss		20/0/0	20/0/0	20/0/0

Our OPFES is significantly better than linear methods with ℓ_2 -distance for relationship characterization

Results

Dataset	Our OPFES	rff-FESL	rff-ROGD	ker-FESL	ker-ROGD
jungle	$.0097 \pm .0047$	$.0161 \pm .0035 \bullet$	$.0246 \pm .0069 \bullet$	$.0276 \pm .0055 \bullet$	$.0329 \pm .0061 \bullet$
splice	$.3070 \pm .0079$	$.3234 \pm .0087 \bullet$	$.3662 \pm .0215 \bullet$	$.4192 \pm .0160 \bullet$	$.4240 \pm .0188 \bullet$
bioresponse	$.2763 \pm .0117$	$.3051 \pm .0137 \bullet$	$.4285 \pm .0192 \bullet$	$.3690 \pm .0095 \bullet$	$.4454 \pm .0116 \bullet$
christine	$.3192 \pm .0095$	$.3316 \pm .0108 \bullet$	$.3503 \pm .0092 \bullet$	$.3858 \pm .0096 \bullet$	$.4506 \pm .0117 \bullet$
svmguide1	$.1614 \pm .0052$	$.1632 \pm .0054 \bullet$	$.2295 \pm .0107 \bullet$	$.1900 \pm .0061 \bullet$	$.2316 \pm .0050 \bullet$
usps	$.1684 \pm .0044$	$.1658 \pm .0051$	$.2184 \pm .0061 \bullet$	$.2267 \pm .0084 \bullet$	$.2857 \pm .0063 \bullet$
aileron	$.1963 \pm .0034$	$.2139 \pm .0059 \bullet$	$.2344 \pm .0098 \bullet$	$.2531 \pm .0076 \bullet$	$.2523 \pm .0076 \bullet$
pol	$.0654 \pm .0036$	$.0686 \pm .0023 \bullet$	$.0807 \pm .0028 \bullet$	$.0865 \pm .0023 \bullet$	$.0956 \pm .0034 \bullet$
elevators	$.2422 \pm .0039$	$.2467 \pm .0037 \bullet$	$.2619 \pm .0045 \bullet$	$.2963 \pm .0042 \bullet$	$.3003 \pm .0051 \bullet$
magic	$.2154 \pm .0039$	$.2121 \pm .0046$	$.2434 \pm .0057 \bullet$	$.2656 \pm .0033 \bullet$	$.3119 \pm .0074 \bullet$
letter	$.1354 \pm .0043$	$.1557 \pm .0037 \bullet$	$.2311 \pm .0067 \bullet$	$.3139 \pm .0060 \bullet$	$.3373 \pm .0076 \bullet$
house	$.1849 \pm .0040$	$.1894 \pm .0043 \bullet$.2001 ± .0093•	$.2598 \pm .0112 \bullet$	$.2597 \pm .0113 \bullet$
nomao	$.0646 \pm .0026$	$.0778 \pm .0017 \bullet$	$.0845 \pm .0041 \bullet$	$.1302 \pm .0034 \bullet$	$.1355 \pm .0032 \bullet$
adult	$.1875 \pm .0023$	$.1906 \pm .0021 \bullet$	$.1932 \pm .0029 \bullet$	$.2277 \pm .0019 \bullet$	$.2218 \pm .0031 \bullet$
acoustic	$.3074 \pm .0024$	$.2967 \pm .0045$ 0	$.2977 \pm .0043$ \circ	$.4168 \pm .0073 \bullet$	$.4107 \pm .0072 \bullet$
runwalk	$.2602 \pm .0033$	$.2578 \pm .0016$ \circ	$.3496 \pm .0130 \bullet$	$.3558 \pm .0021 \bullet$	$.4355 \pm .0061 \bullet$
higgs	$.3946 \pm .0045$	$.3803 \pm .0074$ \circ	$.3807 \pm .0080$ \circ	$.4577 \pm .0054 \bullet$	$.4570 \pm .0055 \bullet$
miniboone	$.1602 \pm .0036$	$.1729 \pm .0029 \bullet$	$.1603 \pm .0029$	$.2488 \pm .0047 \bullet$	$.2484 \pm .0047 \bullet$
ijcnn1	$.0616 \pm .0115$	$.0673 \pm .0028 \bullet$	$.0747 \pm .0083 \bullet$	$.0957 \pm .0009 \bullet$	$.0957 \pm .0009 \bullet$
covtype	$.3782 \pm .0008$	$.3783 \pm .0009$	$.3795 \pm .0012 \bullet$	$.4095 \pm .0025 \bullet$	$.4093 \pm .0025 \bullet$
Win/	Γie/Loss	14/3/3	17/1/2	20/0/0	20/0/0

Our OPFES also outperforms kernel and random feature models with ℓ_2 -distance for feature relationship

Results

Dataset	Our OPFES	align-FESL
jungle	$.0097 \pm .0047$	$.0099 \pm .0028$
splice	$.3070 \pm .0079$	$.3126 \pm .0136$
bioresponse	$.2763 \pm .0117$	$.2921 \pm .0106 \bullet$
christine	$.3192 \pm .0095$	$.3205 \pm .0090$
svmguide1	$.1614 \pm .0052$	$.1617 \pm .0056$
usps	$.1684 \pm .0044$	$.1875 \pm .0073 \bullet$
aileron	$.1963 \pm .0034$	$.2144\pm.0081$ \bullet
pol	$.0654 \pm .0036$	$.0692 \pm .0044 \bullet$
elevators	$.2422 \pm .0039$	$.2419 \pm .0038$
magic	$.2154 \pm .0039$	$.2206 \pm .0039 \bullet$
letter	$.1354 \pm .0043$	$.1568 \pm .0086 \bullet$
house	$.1849 \pm .0040$	$.1927\pm.0030 \bullet$
nomao	$.0646 \pm .0026$	$.0680 \pm .0024$ \bullet
adult	$.1875 \pm .0023$	$.1942\pm.0027 \bullet$
acoustic	$.3074 \pm .0024$	$.3227 \pm .0036 \bullet$
runwalk	$.2602 \pm .0033$	$.2890\pm.0055 \bullet$
higgs	$.3946 \pm .0045$	$.4135\pm.0061 \bullet$
miniboone	$.1602 \pm .0036$	$.2804\pm.0011 \bullet$
ijcnn1	$.0616 \pm .0115$	$.0746 \pm .0038 \bullet$
covtype	$.3782 \pm .0008$	$.3813\pm.0025 \bullet$
Win/	15/5/0	

Our OPFES is also better than random feature models with kernel alignment for feature and label relationship

Convergence results

Our OPFES takes a faster convergence from feature and label relationship characterization with KOM discrepancy and model reuse

- Introduction
- □ Our Work
 - ☐ Kernel Ortho-Mapping discrepancy
 - ☐ Our OPFES approach
- Experiments
- Conclusion

Conclusion

In this work, we propose

- ➤ Kernel Ortho-Mapping (KOM) discrepancy to characterize the relationship between two feature spaces via kernel functions
- ➤ OPFES: one-pass algorithm which incorporates feature and label relationships via KOM discrepancy

Future work: Extension of KOM discrepancy to deep learning.

Paper link

Thanks!