
One-Pass Feature Evolvable Learning 
with Theoretical Guarantees

Cun-Yuan Xing, M.-Z. Qian, W.-Y. Chen, W. Gao and Z.-H. Zhou

National Key Laboratory for Novel Software Technology, Nanjing University



https://lamda.nju.edu.cnICML 25: One-Pass Feature Evolvable Learning with Theoretical Guarantees

Outline

p Introduction

p Our Work

p Kernel Ortho-Mapping discrepancy

p Our OPFES approach

p Experiments

p Conclusion



https://lamda.nju.edu.cnICML 25: One-Pass Feature Evolvable Learning with Theoretical Guarantees

Feature evolvable learning
Feature evolvable learning: old features will vanish and new features 
will emerge when learning with data streams [Hou et al., 2021; Zhang et al., 2021]

In environmental monitoring, different 
sensors collect different features

Old features wear out
New features are deployed

Previous feature evolvable methods consider different relationship
• FESL [Hou et al., 2017]  considers linear relationship for feature space 
• SF2EL [Hou et al., 2021] takes kernel relationship for feature space
• OCDS [He et al., 2023] leverage linear relationship with graphical model
• …
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About this work

Fundamental problems
• How to characterize the relationships between two different feature spaces 
• How to exploit those relationships for feature evolvable learning

In this work, we propose
Ø Kernel Ortho-Mapping (KOM) discrepancy to characterize the relationships 

between two feature spaces via kernel functions

Ø OPFES: one-pass algorithm which incorporates feature and label relationships 
via KOM discrepancy
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Our characterization for feature space

We define the Kernel Ortho-Mapping Discrepancy over �� as

u Dimensionality alignment via empirical kernel mapping for different feature space
u Minimization for the uniqueness of kernel mapping from rotational invariance

• Kernels are introduced to represent feature spaces
� 1  → old feat. space � 1      and     � 2  → new feat. space � 2 

• For sample �� =   ��
 1 ,  ��

 2   
�=1

�
∈  � 1 × � 2  

�, define Gram matrices 

� 1 =  � 1  ��
 1 , ��

 1   
�×�

   and     � 2 =  � 2  ��
 2 , ��

 2   
�×�
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Our characterization for feature space

Lemma We have, for sample �� 
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KOM discrepancy and optimal classifiers

Theorem We have, for sample ��, 

Distance between two optimal classifiers KOM discrepancy KOM discrepancy 

New insights: feature evolvable algorithm 
by optimizing KOM discrepancy 

Dataset Pol

Positive relevance

Old feat. space: optimal classifier
New feat. Space: optimal classifier
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Comparison with previous characterization

Previous characterization:

• kernel alignment[Cortes et al., 2012]

• ℓ2 distance [Heo et al., 2019]

Lemma  For kernel alignment, we have

Lemma We have

Dataset Splice

A smaller difference between two optimal 
classifiers by optimizing KOM discrepancy

Dataset Splice
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Three stages for feature evolvable learning
① Previous stage: receive instances ��

 1 
 from 

the old space � 1  for � = 1,⋯, �1;
② Evolving stage: receive instances ��

 1  and
 ��

 2 
 from � 1  and � 2  respectively for

 �  =  �1   +  1,  · · · ;  �1   + ��;
③ Current stage: receive instances ��

 2  from new 
space � 2 

 for �  =  �1   + ��   +  1,   ⋯ , �1   + ��   +  �2.

Our OPFES approach
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① In previous stage, we consider random Fourier features [Rahimi 
& Recht, 2008]

and take one-pass learning algorithm to update model

Our OPFES approach
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② In the evolving stage of sample ���

 � =   ��
 1 , ��

 2   
�=�1+1⋯�1+��

• Incorporate feature information by learning � 2 

• Incorporate label information by learning �� 

• Reuse previous model

�∗ �, �′ = ��′

Our OPFES approach
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Ø An Online model                                          via random features over 
� 2  and update

Ø Another online model                                      via random features over         
�� and update

Ø Online ensemble classifier

③ In the current stage,

Our OPFES approach
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Our OPFES approach

Previous model reuse

One-pass online kernel learning

Feature and label information incorporation

Prediction with online ensemble
Learn two online models
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Convergence guarantee

Theorem The following holds with probability at least 1 − � (0 < � < 1),

Ø We obtain a tighter bound as for closer feature relationship
Ø It is useful to exploit information and model from old feature space
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Datasets
Benchmark datasets

Large-scale datasets
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Compared methods

l lin-ROGD: linear model, ℓ2 distance for feature relationship [Hou et al., 2017]

l lin-FESL: lin-ROGD + linear model learned from scratch [Hou et al., 2021]

l ker-ROGD: kernel model, ℓ2 distance for feature relationship [Hou et al., 2021]

l ker-FESL: ker-ROGD + kernel model learned from scratch [Hou et al., 2021]

l OCDS: linear model, generative graphical model for feature relationship [He et al., 2021]

“+” stands for online ensemble

l rff-ROGD: random feature model, ℓ2 distance for feature relationship [Lu et al., 2016]

l rff-FESL: rff-ROGD + random feature model learned from scratch [Hou et al., 2021]

l align-FESL: random feature model, kernel alignment for feature and label relationship 
[Sinha & Duchi, 2016]

Additional compared methods
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Results

Our OPFES is significantly 
better than linear methods with 
ℓ2-distance for relationship 
characterization



https://lamda.nju.edu.cnICML 25: One-Pass Feature Evolvable Learning with Theoretical Guarantees

Results

Our OPFES also outperforms 
kernel and random feature 
models with ℓ2-distance for 
feature relationship
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Results

Our OPFES is also better than random feature 
models with kernel alignment for feature and 
label relationship
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Convergence results

Our OPFES takes a faster convergence from feature and label relationship 
characterization with KOM discrepancy and model reuse
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Conclusion

Thanks!

Future work: Extension of KOM discrepancy to deep learning. 

In this work, we propose

Ø Kernel Ortho-Mapping (KOM) discrepancy to characterize the 
relationship between two feature spaces via kernel functions

Ø OPFES:  one-pass algorithm which incorporates feature and label 
relationships via KOM discrepancy

Paper link Contact


