

Fair Clustering via Alignment

Kunwoong Kim, Jihu Lee, Sangchul Park, Yongdai Kim

ICML 2025 @ Vancouver, Canada

Speaker: Kunwoong Kim

INDEX

- Introduction & Contributions
- Main results
- Algorithm
- Theoretical studies
- Experiments
- Conclusion

Introduction & Contributions

Fair Clustering

Group (Proportional) Fairness

Protected group ratio in each cluster ≈ Protected group ratio in the entire dataset

Why it matters?

Biased clustering —> Unfair downstream decisions

Examples: customer segmentation, medical cohorts

Existing works

Categories of fair clustering methods

Pre-processing

Build fair representation —> Apply clustering

In-processing

Jointly optimize clustering objective + fairness penalty

Post-processing

Find fair assignments given fixed cluster centers

Q. Can existing methods achieve the optimal trade-off between utility and fairness?

Contributions

- A novel decomposition of the fair K-means clustering cost:

Transport cost of building an aligned space

- + Clustering cost in that aligned space
- A new fair clustering algorithm (FCA), that is stable and guarantees convergence.
- Theoretically, FCA yields an approximately optimal fair clustering.
- Experimentally, FCA outperforms baseline fair clustering methods.

Main results

Idea

- Fair clustering can be found by matching.
- How can we find matchings that yield the optimal fair clustering?

Main results

If the sizes of the two protected groups are equal, then there exists a one-to-one map between the two groups.

Theorem 3.1. For any given perfectly fair deterministic assignment function A and cluster centers μ , there exists a one-to-one matching map $\mathbf{T}: \mathcal{X}_s \to \mathcal{X}_{s'}$ such that, for any $s \in \{0,1\}$, $C(\mu, A_0, A_1) =$

$$\mathbb{E}_{s} \sum_{k=1}^{K} \mathcal{A}_{s}(\mathbf{X})_{k} \left(\underbrace{\frac{\|\mathbf{X} - \mathbf{T}(\mathbf{X})\|^{2}}{4}}_{\text{Transport cost w.r.t. } \mathbf{T}} + \underbrace{\left\| \frac{\mathbf{X} + \mathbf{T}(\mathbf{X})}{2} - \mu_{k} \right\|^{2}}_{\text{Clustering cost w.r.t. } \boldsymbol{\mu} \text{ and } \mathbf{T}} \right).$$
(2)

Main results

Even when the sizes of the two protected groups are unequal, we have a similar decomposition result using a stochastic matching map.

Let
$$\pi_s=n_s/(n_s+n_{s'})$$
 for $s
eq s'\in\{0,1\}$. We then define
$$\mathbf{T}^{\mathrm{A}}(\mathbf{x}_0,\mathbf{x}_1):=\pi_0\mathbf{x}_0+\pi_1\mathbf{x}_1$$

as the alignment map.

Theorem 3.3. Let $\mu^* \in \mathbb{R}^d$ and $\mathbb{Q}^* \in \mathcal{Q}$ be the cluster centers and joint distribution minimizing

$$\mathbb{E}_{\mathbb{Q}}\left(2\pi_0\pi_1\|\mathbf{X}_0-\mathbf{X}_1\|^2+\min_k\|\mathbf{T}^{\mathbf{A}}(\mathbf{X}_0,\mathbf{X}_1)-\mu_k\|^2\right).$$
(3)

Then, $(\boldsymbol{\mu}^*, \mathcal{A}_0^*, \mathcal{A}_1^*)$ is the solution of the perfectly fair K-means clustering, where $\mathcal{A}_0^*(\mathbf{x})_k := \mathbb{Q}^* \left(\arg \min_{k'} \| \mathbf{T}^A(\mathbf{x}, \mathbf{X}_1) - \mu_{k'} \|^2 = k | \mathbf{X}_0 = \mathbf{x} \right)$ and $\mathcal{A}_1^*(\mathbf{x})_k$ is defined similarly.

Algorithm

Overview

Optimal fair clustering can be found by simultaneously minimizing:

- (i) The transport cost w.r.t. the matching between two groups (to align data points from two groups) and
- (ii) The clustering cost w.r.t. the cluster centers in the aligned space.

Proposed algorithms

- ◆ FCA: perfect fairness
- FCA-C: control of fairness
- ◆ FCA-C is a general version of FCA.

Algorithm 1 FCA algorithm

input (i) Dataset $\mathcal{X}_0 \cup \mathcal{X}_1$. (ii) The number of clusters K.

- 1: Initialize cluster centers $\mu = {\{\mu_k\}_{k=1}^K}$.
- 2: while μ has not converged do
- 3: Update $\Gamma = [\gamma_{i,j}] \in \mathbb{R}_+^{n_0 \times n_1}$ by solving eq. (4) for a fixed μ . // Phase 1: update Γ
- 4: Update μ by solving $\min_{\mu} \sum_{i=1}^{n_0} \sum_{j=1}^{n_1} \gamma_{i,j} \min_{k} \|\mathbf{T}^{A}(\mathbf{x}_i, \mathbf{x}_j) \mu_k\|^2$ for a fixed Γ . // Phase 2: update μ
- 5: end while
- 6: Build fair assignments: for $\mathbf{x}_i \in \mathcal{X}_s$, define $\mathcal{A}_s(\mathbf{x}_i)_k := \sum_{\mathbf{x}_j \in \mathcal{X}_{s'}} n_s \gamma_{i,j} \mathbb{1}(\arg\min_{k'} \|\pi_s \mathbf{x}_i + \pi_{s'} \mathbf{x}_j \mu_{k'}\|^2 = k), k \in [K].$

output (i) Cluster centers $\boldsymbol{\mu} = \{\mu_k\}_{k=1}^K$. (ii) Assignments $\mathcal{A}_0(\mathbf{x}_i), \mathbf{x}_i \in \mathcal{X}_0$ and $\mathcal{A}_1(\mathbf{x}_j), \mathbf{x}_j \in \mathcal{X}_1$.

Algorithm 2 FCA-C algorithm

- **input** (i) Dataset $\mathcal{X}_0 \cup \mathcal{X}_1$. (ii) The number of clusters K. (iii) Fairness level $\varepsilon \in [0, 1]$.
- 1: Initialize cluster centers $\boldsymbol{\mu} = \{\mu_k\}_{k=1}^K$ and a subset $\mathcal{W} \subset \mathcal{X}_0 \times \mathcal{X}_1$ such that $\frac{1}{n_0 n_1} \sum_{i=1}^{n_0} \sum_{j=1}^{n_1} \mathbb{I}((\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{W}) < \varepsilon$.
- 2: while μ has not converged do
- 3: Calculate the costs $C_{K\text{-means}}$ for $(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{W}$ and C_{FCA} for $(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{W}^c$.
- 4: Update Γ by minimizing eq. (5) for fixed μ and \mathcal{W} .

 // Phase 1: update Γ
- 5: Update μ by minimizing eq. (5) for fixed Γ and \mathcal{W} .

 // Phase 2: update μ
- 6: For all $(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{X}_0 \times \mathcal{X}_1$, calculate $\eta(\mathbf{x}_i, \mathbf{x}_j) := 2\pi_0\pi_1\|\mathbf{x}_i \mathbf{x}_j\|^2 + \min_k \|\mathbf{T}^{\mathsf{A}}(\mathbf{x}_i, \mathbf{x}_j) \mu_k\|^2$. Let η_{ε} be the ε th upper quantile. Update $\mathcal{W} = \{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{X}_0 \times \mathcal{X}_1 : \eta(\mathbf{x}_i, \mathbf{x}_j) > \eta_{\varepsilon}\}$.

// Phase 3: update W

7: end while

- 8: Build fair assignment functions A_0 and A_1 following Equation (6).
- **output** (i) Cluster centers $\boldsymbol{\mu} = \{\mu_k\}_{k=1}^K$. (ii) Assignments $\mathcal{A}_0(\mathbf{x}_i), \mathbf{x}_i \in \mathcal{X}_0 \text{ and } \mathcal{A}_1(\mathbf{x}_j), \mathbf{x}_j \in \mathcal{X}_1$.

Theoretical studies

Approximation guarantee

- FCA-C returns a $(\tau + 2)$ -approximate solution, where τ is the approximation error of a standard clustering algorithm used to find initial cluster centers.

Suppose that $\sup_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x}\|^2 \le R$ for some R > 0.

Theorem 4.3 (Approximation guarantee of FCA-C). For any given ε , FCA-C algorithm returns an $(\tau + 2)$ -approximate solution with a violation $3R\varepsilon$ for the optimal fair clustering, which is the solution of $\min_{\mu, A_0, A_1} C(\mu, A_0, A_1)$ subject to $(A_0, A_1) \in \mathbf{A}_{\varepsilon}$.

- The rate $(\tau + 2)$ is similar to / better than existing algorithms.

Control of fairness level

Theorem 4.1 (Equivalence between \tilde{C} and constrained C). Minimizing FCA-C objective $\tilde{C}(\mathbb{Q}, \mathcal{W}, \boldsymbol{\mu})$ with the corresponding assignment function defined in eq. (6), is equivalent to minimizing $C(\boldsymbol{\mu}, \mathcal{A}_0, \mathcal{A}_1)$ subject to $(\mathcal{A}_0, \mathcal{A}_1) \in \mathbf{A}_{\varepsilon}$.

Balance bound

Proposition 4.2 (Relationship between balance and ε). *For any assignment function* $(A_0, A_1) \in \mathbf{A}_{\varepsilon}$, we have

$$\max_{k \in [K]} \left| \frac{\sum_{\mathbf{x}_i \in \mathcal{X}_0} \mathcal{A}_0(\mathbf{x}_i)_k}{\sum_{\mathbf{x}_j \in \mathcal{X}_1} \mathcal{A}_1(\mathbf{x}_j)_k} - \frac{n_0}{n_1} \right| \le c\varepsilon, \tag{7}$$

where
$$c = \frac{n_0}{n_1} \max_{k \in [K]} \frac{1}{\mathbb{E}_1 \mathcal{A}_1(\mathbf{X})_k}$$
.

- Balance is bounded by ϵ (i.e., the fairness level that FCA-C controls).

Experiments

Outperformance of FCA

Tabular datasets

Dataset / Bal*	ADULT	/ 0.494	BANK /	0.649	CENSUS	/ 0.969
With L_2 normalization	Cost (↓)	Bal (†)	Cost (↓)	Bal(†)	Cost (\dagger)	Bal (†)
Standard (fair-unaware) FCBC (Esmaeili et al., 2021) SFC (Backurs et al., 2019) FRAC (Gupta et al., 2023) FCA ✓	0.295 0.314 0.534 0.340 0.328	0.223 0.443 0.489 0.490 0.493	0.208 0.685 0.410 0.307 0.264	0.325 0.615 0.632 0.642 0.645	0.403 1.006 1.015 0.537 0.477	0.024 0.926 0.937 0.954 0.962

Image datasets

Dataset / Bal*	R	RMNIST / 1.000			OFFICE-31 / 0.282		
Performance	ACC (†)	NMI (†)	Bal(†)	ACC (†)	NMI (†)	Bal(†)	
Standard (fair-unaware) SFC (Backurs et al., 2019) VFC (Ziko et al., 2021) DFC (Li et al., 2020) FCMI (Zeng et al., 2023) FCA ✓	41.0 51.3 38.1 49.9 88.4 89.0	52.8 49.1 42.7 68.9 86.4 79.0	0.000 1.000 0.000 0.800 0.995 1.000	63.8 61.6 64.8 69.0 70.0 67.6	66.8 61.2 70.4 70.9 71.2 70.5	0.192 0.267 0.212 0.165 0.226 0.270	

Fairness level control

Stability / Robustness

Dataset / Bal*	ADULT / 0.494	BANK / 0.649	Census / 0.969
With L_2 normalization	Cost Bal	Cost Bal	Cost Bal
FCA (<i>K</i> -means++) FCA (<i>K</i> -means random) FCA (Gradient-based)		0.264 0.645 0.275 0.646 0.254 0.640	0.477 0.955

Partitioning technique

Linear program vs. Sinkhorn

ADULT					
$\mathrm{Bal}^\star = 0.494$	Cost (↓)	Bal (†)	Runtime / iteration (sec)		
FCA (Sinkhorn, $\lambda = 1.0$) FCA (Sinkhorn, $\lambda = 0.1$) FCA (Sinkhorn, $\lambda = 0.01$) FCA (Linear program)	0.350 0.315 0.330 0.328	0.271 0.463 0.491 0.493	4.98 5.12 5.55 5.67		

Conclusion

Summary

- Decomposition: Alignment + Clustering
- FCA: stable and provable fair K-means clustering algorithm
- FCA-C: a variant of FCA, which can control fairness level

Future works

- Applying FCA to other clustering algorithms such as model-based clustering, e.g., Gaussian mixture.

Thank you!

Questions? Email me at:

kwkim.online@gmail.com