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Introduction & Contributions



« Fair Clustering
Group (Proportional) Fairness

Protected group ratio in each cluster ® Protected group ratio in the entire dataset

Unfair clustering

Fair clustering
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Why it matters?

Biased clustering —> Unfair downstream decisions

Examples: customer segmentation, medical cohorts



» EXxisting works
Categories of fair clustering methods

Pre-processing

Build fair representation —> Apply clustering

In-processing

Jointly optimize clustering objective + fairness penalty

Post-processing

Find fair assignments given fixed cluster centers

Q. Can existing methods achieve the optimal trade-off between utility and fairness?



Contributions

- A novel decomposition of the fair K-means clustering cost:

Transport cost of building an aligned space

+ Clustering cost in that alighed space

- A new fair clustering algorithm (FCA), that is stable and guarantees convergence.

- Theoretically, FCA yields an approximately optimal fair clustering.

- Experimentally, FCA outperforms baseline fair clustering methods.



Main results



= Ildea

- Fair clustering can be found by matching.
- How can we find matchings that yield the optimal fair clustering?
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Main results

If the sizes of the two protected groups are equal,
then there exists a one-to-one map between the two groups.

Theorem 3.1. For any given perfectly fair deterministic
assignment function A and cluster centers p, there exists a
one-to-one matching map 'T' : X; — X such that, for any

s € {0,1}, C(p, Ao, A1) =
)

~
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Main results

Even when the sizes of the two protected groups are unequal,
we have a similar decomposition result using a stochastic matching map.

Let s = ns/(ns+ns ) fors # s' € {0,1}. We then define
TA(Xo,Xl) = ToXo + m1X1

as the alignment map.

Theorem 3.3. Let p* € R and Q* € Q be the cluster
centers and joint distribution minimizing

Eq (27fo7f1||xo = X4 [|* + min | T*(Xo, X1) — #k||2> :

3)

Then, (p*, A, A7) is the solution of the per-
fectly fair K-means clustering, where Aj(X)r :=
Q* (arg miny, | TA(x,X1) — pw > = k|Xo =x)  and
A3 (X) . is defined similarly.



Algorithm



Overview

Fair clusterings

Optimalfair clustering:
A fair clustering that achieves the

minimum cost among all fair clusterings . )
Feasible clusterings

Optimal fair clustering can be found by simultaneously minimizing:

() The transport cost w.r.t. the matching between two groups (to align data
points from two groups) and

(i) The clusteringcost w.r.t. the cluster centers in the aligned space.



= Proposed algorithms

€ FCA: perfect fairness
€ FCA-C: control of fairness
& FCA-C is ageneral version of FCA.

Algorithm 1 FCA algorithm

input (i) Dataset Xy U A&7 . (ii) The number of clusters K.
1: Initialize cluster centers p = {ux } ;.
2: while p has not converged do
3:  Update I = [y; ;] € R °™™ by solving eq. (4)
for a fixed p. // Phase 1: update I
4:  Update p by solving
ming, Y501 Y0 i g ming, [ TA (%, x5) — ||
for a fixed I'. // Phase 2: update p
5: end while
6: Build fair assignments: for x; € X, define
Ag(Xi)k 2x;ex, NsYijl(argming [|msx; +
TeX; — e ||? = k), k € [K].
output (i) Cluster centers p = {y; }< . (ii) Assignments
Ao(xi),x; € Xp and A;(x,),x; € Xj.

Algorithm 2 FCA-C algorithm

input (i) Dataset A U A . (i1) The number of clusters K.

1:

2:
3:

4:

7:
8:

(iii) Fairness level € € [0, 1].
Initialize cluster centers p = {ux}_, and a subset
W C Xox Xy such that —— 77" 57" (x4, %) €
W) <e.
while g has not converged do
Calculate the costs Cx-means for (x;,x;) € YW and
Crca for (x;,x;) € We.
Update I' by minimizing eq. (5) for fixed p and W.
// Phase 1: update I'
Update g by minimizing eq. (5) for fixed I' and W.
// Phase 2: update u
For all (x;,x;) € Xp x A}, calculate n(x;,x;) =
2momy ||x; —x; |2 +miny, | T2 (x;, x;) — k|| ?- Let e
be the cth upper quantile. Update W = {(x;,x;) €
Xo x X1 1 n(xi,x;) > e}
// Phase 3: update W
end while
Build fair assignment functions A, and A, following
Equation (6).

output (i) Cluster centers g = {yux }<_,. (ii) Assignments

.A()(xi),xi € Xp and .A1(Xj),x_7' € AX.




Theoretical studies



= Approximation guarantee

- FCA-C returns a (7 + 2)-approximate solution, where 7 is the
approximation error of a standard clustering algorithm used to find
initial cluster centers.

Suppose that sup, ¢ » ||x||? < R for some R > 0.

Theorem 4.3 (Approximation guarantee of FCA-C).
For any given ¢, FCA-C algorithm returns an (T +
2)-approximate solution with a violation 3Re for
the optimal fair clustering, which is the solution of
min,, 4,,4, C(p, Ao, A1) subject to (Ao, A1) € A..

- The rate (7 + 2) is similar to / better than existing algorithms.



= Control of fairness level %1

Xy X2 X3 X3 X5

€ W¢: FCA cost applied

X Yi1|Yiz| Yi3| Y14 Y15

Xo € W: K-means cost applied

X2 Y21 | Y2z | Y23| Y2a| Y25

Theorem 4.1 (Equivalence between C and constrained C).
Minimizing FCA-C objective C (Q, W, u) with the corre-
sponding assignment function defined in eq. (6), is equiva-
lent to minimizing C (., Ao, A1) subject to (Ao, A1) € A..

= Ba I ance bOU n d Proposition 4.2 (Relationship between balance and ). For

any assignment function (Ao, A1) € A., we have

> oxex, Ao(Xi)k g
max -
kelK] | Doy, eq A1(X)k M

— ng 1
where ¢ = ny MAXke K] &4, (X, -

- Balance is bounded by € (i.e., the fairness level that FCA-C controls).



Experiments



=« Outperformance of FCA

Tabulardatasets
Dataset / Bal” | ApuLT/0.494 | BANK/0.649 | CENSUS/0.969
With L, normalization | Cost (}) | Bal (1) | Cost () | Bal () | Cost () | Bal (1)
Standard (fair-unaware) 0.295 0.223 0.208 0.325 0.403 0.024
FCBC (Esmaeili et al., 2021) 0.314 0.443 0.685 0.615 1.006 0.926
SFC (Backurs et al., 2019) 0.534 0.489 0.410 0.632 1.015 0.937
FRAC (Gupta et al., 2023) 0.340 0.490 0.307 0.642 0.537 0.954
FCA v 0.328 0.493 0.264 0.645 0.477 0.962

Image datasets
Dataset / Bal* | RMNIST / 1.000 | OFFICE-31/0.282
Performance | ACC (1) | NMI (1) | Bal (1) || AcC (1) | NMI (1) | Bal (1)
Standard (fair-unaware) 41.0 52.8 0.000 63.8 66.8 0.192
SFC (Backurs et al., 2019) 51.3 49.1 1.000 61.6 61.2 0.267
VFEC (Ziko et al., 2021) 38.1 42.7 0.000 64.8 70.4 0.212
DFC (Li et al., 2020) 499 68.9 0.800 69.0 70.9 0.165
FCMI (Zeng et al., 2023) 88.4 86.4 0.995 70.0 71.2 0.226
FCA v 89.0 79.0 1.000 67.6 70.5 0.270




Fairness level control
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Stability / Robustness
Dataset / Bal* | ADULT/0.494 | BANK/0.649 | CENSUS/0.969
With L, normalization || Cost | Bal | Cost | Bal | Cost | Bal
FCA (K-means++) 0.328 | 0.493 | 0.264 | 0.645 | 0.477 0.962
FCA (K-means random) || 0.331 | 0.490 | 0.275 | 0.646 | 0.477 0.955
FCA (Gradient-based) 0.339 | 0.492 | 0.254 | 0.640 | 0.478 0.957




» Partitioning technique

Adult

Bank Census
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« Linear program vs. Sinkhorn
ADULT
Bal® = 0.494 Cost (1) | Bal (1) | Runtime / iteration (sec)
FCA (Sinkhorn, A = 1.0) 0.350 0.271 4.98
FCA (Sinkhorn, A = 0.1) 0.315 0.463 5.12
FCA (Sinkhorn, A = 0.01) 0.330 0.491 5.55
FCA (Linear program) 0.328 0.493 5.67

" Cost



Conclusion



Summary

- Decomposition: Alignment + Clustering
- FCA: stable and provable fair K-means clustering algorithm
- FCA-C: a variant of FCA, which can control fairness level

Future works

- Applying FCA to other clustering algorithms such as model-based clustering,
e.g., Gaussian mixture.



Thank you!

Questions? Email me at:

kwkim.online@gmail.com
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