ICML 2025

Global Context-aware Representation Learning for Spatially Resolved Transcriptomics

Yunhak Oh*, Junseok Lee*, Yeongmin Kim, Sangwoo Seo, Namkyeong Lee, & Chanyoung Parkt

- *: Equal Contribution
- **†: Corresponding Author**

Spotscape enhances spatial transcriptomics analysis by capturing global cellular relationships and balancing the similarity scales to more accurately map tissue structures across single and multiple slices

TODAY

13	14	15	16	17	18	19
SUN	MON	TUE	WED	THU	FRI	SAT

04:30 pm

ICML 2025 Poster Session 6

@Vancouver Convention Center

01. Background

02. Challenges

03. Methodology

04. Experiments

05. Conclusion

06:00 pm

Spatially Resolved Transcriptomics (SRT) BACKGROUND

	Gene 1	Gene 2	Gene 3	Gene 4
Spot 1	18	1010	0	22
Spot 2	0	506	49	0
Spot 3	0	0	0	72

- SRT incorporate the spatial context and gene expression of cells
 - allowing for the identification of where specific genes are expressed within tissue
 - enables the study of diseases, such as cancer, by observing gene expression patterns in different tissue regions

Spatially Resolved Transcriptomics (SRT) BACKGROUND

Representation Learning on SRT data for various downstream tasks

Image credit: [Nature Computational Science 2023] Integrating spatial transcriptomics data across different conditions, technologies and developmental stages https://www.archrproject.com/bookdown/defining-cluster-identity-with-scrna-seq.html

Continuous Nature CHALLENGE 1

Continuous nature of biological systems (SRT data)

→ Gene expression values vary smoothly along spatial coordinates

Observations

- Local (spatially close) spots have high similarity, regardless of the spatial domain
 - 1. Results in a negative effect on GNNs by acquiring information from heterophilic nodes
 - 2. Difficult to learn the appropriate attention scores that gives high scores to homophilic nodes due to their low feature difference
 - 3. Even if it can learn appropriate edges (attentions), local view has insufficient information

Should capture the relationships between spots in global context

Batch Effects CHALLENGE 2

Batch effects in SRT data

→ Gene expression profiles from the same slice cluster together unexpectedly, regardless of their biological relevance

Should alleviate batch effects to extend multi-slices tasks

Key Ideas METHODOLOGY OVERVIEW

- Capturing global relationships between cells by learning robust similarities with respect to different augmentations
- Explicitly balances the similarity scales of inter- and intra-relationships to mitigate batch effects
- Grouping spots from the same spatial domain while distancing others in latent space using PCL scheme to mitigate batch effects

- Capturing global relationships between cells by learning robust similarities with respect to different augmentations
- Explicitly balances the similarity scales of inter- and intra-relationships to mitigate batch effects
- Grouping spots from the same spatial domain while distancing others in latent space using PCL scheme to mitigate batch effects

- Capturing global relationships between cells by learning robust similarities with respect to different augmentations
- Explicitly balances the similarity scales of inter- and intra-relationships to mitigate batch effects
- Grouping spots from the same spatial domain while distancing others in latent space using PCL scheme to mitigate batch effects

- Capturing global relationships between cells by learning robust similarities with respect to different augmentations
- Explicitly balances the similarity scales of inter- and intra-relationships to mitigate batch effects
- Grouping spots from the same spatial domain while distancing others in latent space using PCL scheme to mitigate batch effects

Key Ideas of Spotscape

- Capturing global relationships between cells by learning robust similarities with respect to different augmentations
- Explicitly balances the similarity scales of inter- and intra-relationships to mitigate batch effects
- Grouping spots from the same spatial domain while distancing others in latent space using PCL scheme to mitigate batch effects

Similarity Consistency Loss

- Spotscape captures relative similarities between spots, aligning with the spatial dynamics of SRT data, unlike other baselines
- Spotscape exhibits varying similarity levels based on the true spatial domains, accurately reflecting spatial distance relationships

Key Ideas of Spotscape

- Capturing global relationships between cells by learning robust similarities with respect to different augmentations
- Explicitly balances the similarity scales of inter- and intra-relationships to mitigate batch effects
- Grouping spots from the same spatial domain while distancing others in latent space using PCL scheme to mitigate batch effects

(b) Multi-Slice SRT

Key Ideas of Spotscape

- Capturing global relationships between cells by learning robust similarities with respect to different augmentations
- Explicitly balances the similarity scales of inter- and intra-relationships to mitigate batch effects
- Grouping spots from the same spatial domain while distancing others in latent space using PCL scheme to mitigate batch effects

Batch Effects: Experimental condition or noise ≫ Biological relevance

(b) Multi-Slice SRT

Key Ideas of Spotscape

- Capturing global relationships between cells by learning robust similarities with respect to different augmentations
- Explicitly balances the similarity scales of inter- and intra-relationships to mitigate batch effects s
- Grouping spots from the same spatial domain while distancing others in latent space using PCL scheme to mitigate batch effects

Batch Effects: Experimental condition or noise ≫ Biological relevance

(b) Multi-Slice SRT

Key Ideas of Spotscape

- Capturing global relationships between cells by learning robust similarities with respect to different augmentations
- Explicitly balances the similarity scales of inter- and intra-relationships to mitigate batch effects
- Grouping spots from the same spatial domain while distancing others in latent space using PCL scheme to mitigate batch effects

Prototype set of times k-means
$$\mathcal{P}_{K_t}^t \bullet \widetilde{Z}'$$

$$l_{PCL}(\tilde{Z}_i, P_{\text{set}}) = \frac{1}{T} \sum_{t=1}^{T} \log \frac{e^{(\text{sim}(\tilde{Z}_i, p_{\text{map}_t(i)}^t)/\tau)}}{\sum_{j=1}^{K_t} e^{(\text{sim}(\tilde{Z}_i, p_j^t)/\tau)}},$$

$$\mathcal{L}_{PCL} = -\frac{1}{N_s} \sum_{i=1}^{N_s} l_{PCL}(\tilde{Z}_i, P_{\text{set}}).$$

• To avoid the risk of obtaining inaccurate prototypes, the PCL loss gets involved to the training procedure after a warm-up period

Key Ideas of Spotscape

- Capturing global relationships between cells by learning robust similarities with respect to different augmentations
- Explicitly balances the similarity scales of inter- and intra-relationships to mitigate batch effects
- Grouping spots from the same spatial domain while distancing others in latent space using PCL scheme to mitigate batch effects

• Spotscape effectively integrates spot representations across slices while preserving biological meaning

Extensive experiments on both single- and multi-slice tasks

Single-Slice Tasks

- Spatial Domain Identification
- Trajectory Inference
- Denoising & Imputation

Multi-Slice Tasks

- Integration
- Alignment
- Differentially expressed gene (DEG) analysis

Spatial Domain Identification

								(a) DLPFC	(Patient 1)								
		Slice 151673					Slice 151674			Slice 151675					Slice 1516	576	
	ARI	N	MI	CA	s	ARI	NMI	CA	ARI	NI	MI	CA		ARI	NMI		CA
SEDR	0.36 (0.08	0.49	(0.08)	0.55 (0.06)		0.37 (0.08)	0.48 (0.07)	0.51 (0.07)	0.33 (0.06	0.45	(0.05)	0.51 (0	.03)	0.29 (0.03)	0.41 (0.04	4)	0.47 (0.02)
STAGATE	0.37 (0.04	0.55	(0.03)	0.52 (0.04)		0.34 (0.03)	0.50 (0.02)	0.51 (0.03)	0.33 (0.03	0.50	(0.03)	0.48 (0	.03)	0.33 (0.00)	0.47 (0.0	1)	0.52 (0.01)
SpaCAE	0.21 (0.01	0.37	(0.01)	0.43 (0.01)	3	0.25 (0.03)	0.38 (0.01)	0.44 (0.03)	0.23 (0.03	0.41	(0.03)	0.42 (0	.04)	0.23 (0.02)	0.34 (0.03	2)	0.43 (0.03)
SpaceFlow	0.42 (0.06	0.57	(0.05)	0.57 (0.03)		0.37 (0.04)	0.51 (0.03)	0.53 (0.03)	0.38 (0.07	0.55	(0.06)	0.53 (0	.05)	0.38 (0.05)	0.51 (0.03	5)	0.53 (0.04)
GraphST	$\overline{0.20}$ (0.02)		(0.03)	$\overline{0.41}$ (0.02)	i	0.27 (0.02)	0.41 (0.01)	0.46 (0.01)	0.22 (0.02)	$\overline{0.34}$	(0.01)	$\overline{0.40}$ (0	.02)	0.26 (0.05)	0.40 (0.03	5)	0.45 (0.04)
Spotscape	0.48** (0.6	0.64*	* (0.01)	0.61** (0.0	.) 0	.47** (0.04)	0.60** (0.02)	0.60** (0.03)	0.45** (0.	02) 0.60*	(0.01)	0.59**	(0.02)	0.42* (0.05)	0.58** (0.	04)	0.57* (0.03)
								(a) DLPFC	(Patient 2)								
		Slice	151507				Slice 151508	1		Slice 1	151509				Slice 151	510	
	ARI	N	MI	CA		ARI	NMI	CA	ARI	N	MI	C	A	ARI	NMI	[CA
SEDR	0.29 (0.0	6) 0.39	9 (0.07)	0.45 (0.00)	0.21 (0.02)	0.31 (0.02)	0.39 (0.02)	0.37 (0.04	0.47	(0.04)	0.51	(0.05)	0.31 (0.05)	0.44 (0.	04)	0.47 (0.04)
STAGATE	0.41 (0.0	1) 0.5	3 (0.01)	0.59 (0.00)	0.32 (0.01)	0.49 (0.00)	0.54 (0.01)	0.41 (0.02	0.57	(0.02)	0.61	(0.04)	0.32 (0.03)	0.50 (0.	02)	0.50 (0.02)
SpaCAE	0.28 (0.0	6) 0.4	1 (0.06)	0.46 (0.00)	0.20 (0.04)	0.31 (0.05)	0.40 (0.04)	0.31 (0.01	0.44	(0.02)	0.50	(0.04)	0.27 (0.02)	0.42 (0.	03)	0.45 (0.02)
SpaceFlow	0.55 (0.0	3) 0.6	8 (0.02)	0.71 (0.05)	0.44 (0.04)	0.57 (0.03)	0.58 (0.04)	0.53 (0.05		(0.02)	0.65	(0.04)	0.50 (0.03)	0.64 (0.	01)	0.61 (0.02)
GraphST	0.31 (0.0		5 (0.01)	0.50 (0.0)		0.34 (0.01)	$\overline{0.45}$ (0.02)	0.53 (0.02)	0.35 (0.01	0.51	(0.01)	0.55	(0.02)	0.30 (0.02)	$\overline{0.47}$ (0.	01)	0.49 (0.03)
Spotscape	0.60** (0	.03) 0.72	** (0.01)	0.76** (0.	(3)	0.48* (0.05)	0.64** (0.03)	0.63** (0.02)	0.59** (0.0	01) 0.71*	* (0.01)	0.70**	(0.02)	0.53* (0.04)	0.67** (0.02)	0.64 (0.04)
								(a) DLPFC	(Patient 3)								
		Slice 1	51669			1	Slice 151670			Slice 15	1671				Slice 1516	72	
	ARI	N	MI	CA	_	ARI	NMI	CA	ARI	NM	I	CA		ARI	NMI		CA
SEDR	0.24 (0.07	0.40	(0.07)	0.48 (0.06)	0	0.24 (0.06)	0.39 (0.05)	0.48 (0.05)	0.37 (0.10)	0.50 (0	0.09)	0.59 (0.0	7)	0.49 (0.09)	0.58 (0.06)	,	0.66 (0.07)
STAGATE	0.29 (0.05	0.45	(0.07)	0.52 (0.04)	0	0.20 (0.01)	0.38 (0.01)	0.44 (0.01)	0.40 (0.07)	0.49 (0	0.03)	0.63 (0.0	6)	0.38 (0.02)	0.51 (0.04)	,	0.54 (0.01)
SpaCAE	0.21 (0.02	0.28	(0.03)	0.43 (0.02)	0	0.21 (0.03)	0.28 (0.02)	0.43 (0.04)	0.38 (0.16)	0.29 (0	0.01)	0.49 (0.0	5)	0.25 (0.04)	0.35 (0.05)	,	0.50 (0.01)
SpaceFlow	0.30 (0.07	0.48	(0.03)	0.51 (0.05)	0	0.34 (0.05)	0.50 (0.03)	0.56 (0.05)	0.54 (0.04)	0.67 (0	0.02)	0.67 (0.0	4)	0.60 (0.06)	0.70 (0.02)	,	0.73 (0.06)
GraphST	0.17 (0.04	0.26	(0.04)	0.43 (0.02)	0).14 (0.01)	0.23 (0.00)	0.37 (0.01)	0.30 (0.05)	0.38 (0	0.03)	0.54 (0.0	3)	0.23 (0.01)	0.32 (0.02)	i	0.49 (0.01)
Spotscape	0.46** (0.6	0.58*	* (0.01)	0.65** (0.02	0.4	45** (0.04)	0.56** (0.03)	0.66** (0.03)	0.68** (0.10)	0.74**	(0.04)	0.79** (0	.08)	0.75** (0.04)	0.74** (0.0	2) 0	.84** (0.05)
	(b) MT	G - Control	Group		(b)	MTG - AD G	Froup		(c)	Mouse Emb	oryo	-1			(d) NS	CLC	
	ARI	NMI	CA	<u> </u>	ARI	NMI	CA		ARI	NMI	C	A		AI	I N	MI	CA
SEDR	0.41 (0.02)	0.59 (0.02)	0.52	(0.02)	43 (0.08)	0.59 (0.07)	0.57 (0.07)	SEDR	0.32 (0.02)	0.56 (0.01)	0.42	(0.02)	SEDF	0.44		5 (0.06)	0.70 (0.08)
STAGATE	0.54 (0.00)	0.65 (0.00)	0.59		51 (0.01)	0.61 (0.01)	0.59 (0.01)	STAGATE	0.36 (0.01)	0.60 (0.01)	0.47		STAGA			1 (0.04)	0.64 (0.02)
SpaCAE	0.37 (0.03)	0.52 (0.00)	0.44 (22 (0.01)	0.40 (0.01)	0.40 (0.01)	SpaCAE	0.34 (0.01)	0.60 (0.01)	0.48		SpaCA			8 (0.03)	0.62 (0.02)
SpaceFlow	$\frac{0.66}{0.28}$ (0.03)	$\frac{0.74}{0.51}$ (0.01)	$\frac{0.70}{0.40}$	_	54 (0.01)	$\frac{0.71}{0.55}$ (0.00)	$\frac{0.65}{0.55}$ (0.01)	SpaceFlow	$\frac{0.42}{0.24}$ (0.03)	0.60 (0.02)	$\frac{0.49}{0.45}$		SpaceFl			$\frac{2}{2}$ (0.02)	0.75 (0.02)
GraphST	0.38 (0.00)	0.51 (0.00)	0.48 (-	43 (0.06)	0.55 (0.05)	0.55 (0.04)	GraphST	0.34 (0.01)	0.59 (0.02)	0.45		GraphS			8 (0.00)	0.65 (0.00)
Spotscape	0.73** (0.02)	0.78** (0.01)	0.75**	(0.03)	8** (0.02)	0.75** (0.01)	0.77** (0.03)	Spotscape	0.44 (0.01)	0.63** (0.01)	0.54**	* (0.01)	Spotsca	ape 0.57**	(0.02) 0.57	** (0.01)	0.74 (0.01)

All experiments are repeated over 10 runs with different random seeds, and we report the mean and standard deviation of the results. For all experimental results, **Bold** indicates the best performance, <u>underlining</u> denotes the second-best, and an asterisk (*) marks statistically significant improvements of Spotscape over the top-performing baseline based on a paired t-test (**: p < 0.01, *: p < 0.05), with the numbers in parentheses representing the standard deviation.

- Spotscape consistently outperforms all baselines across 4 datasets and 16 slices
- Moves beyond the limited insights of local neighbor analysis by capturing global contextual information

Trajectory Inference

• Spotscape accurately captured the known developmental sequence, demonstrating its ability to model biologically meaningful patterns

Denoising & Imputation

- Spotscape clarifies marker gene expression for easier identification in noisy raw data in denoising task
- Spotscape achieves best performance in imputation, leading baselines on RMSE and L1-distance metrics

Integration

Table 2. Homogeneous integration performance on DLPFC data.

	Patient 1				Patient 2		Patient 3				
	ARI	NMI	CA	ARI	NMI	CA	ARI	NMI	CA		
SEDR	0.38 (0.06)	0.49 (0.06)	0.56 (0.06)	0.32 (0.05)	0.44 (0.07)	0.48 (0.07)	0.43 (0.02)	0.51 (0.01)	0.56 (0.03)		
STAGATE	0.31 (0.03)	0.46 (0.03)	0.49 (0.03)	0.30 (0.02)	0.46 (0.01)	0.48 (0.02)	0.31 (0.09)	0.43 (0.06)	0.54 (0.08)		
SpaCAE	0.21 (0.03)	0.36 (0.02)	0.40 (0.02)	0.12 (0.06)	0.19 (0.07)	0.32 (0.05)	0.13 (0.05)	0.14 (0.05)	0.43 (0.06)		
SpaceFlow	0.48 (0.03)	0.60 (0.02)	0.60 (0.02)	0.44 (0.05)	0.59 (0.02)	0.58 (0.04)	0.51 (0.02)	0.60 (0.01)	0.69 (0.05)		
GraphST	$\overline{0.18}$ (0.01)	$\overline{0.32}$ (0.01)	$\overline{0.38}$ (0.02)	$\overline{0.25}$ (0.01)	$\overline{0.39}$ (0.01)	$\overline{0.42}$ (0.02)	$\overline{0.25}$ (0.04)	$\overline{0.30}$ (0.04)	$\overline{0.50}$ (0.01)		
PASTE	0.34 (0.00)	0.45 (0.00)	0.54 (0.00)	0.17 (0.00)	0.28 (0.00)	0.40 (0.00)	0.29 (0.00)	0.43 (0.00)	0.54 (0.00)		
STAligner	0.38 (0.04)	0.52 (0.04)	0.55 (0.04)	0.29 (0.02)	0.45 (0.02)	0.48 (0.03)	0.37 (0.06)	0.47 (0.05)	0.59 (0.06)		
CAST	0.26 (0.02)	0.37 (0.03)	0.42 (0.03)	0.30 (0.04)	0.43 (0.05)	0.47 (0.03)	0.38 (0.06)	0.40 (0.04)	0.56 (0.05)		
Spotscape	0.57** (0.03)	0.70** (0.02)	0.67** (0.03)	0.53** (0.02)	0.67** (0.01)	0.63** (0.02)	0.63** (0.09)	0.68** (0.03)	0.75** (0.09)		

Table 3. Heterogeneous integration performance on MTG data.

	C	lustering Meti	ric	Batch Effect Correction Metric					
	ARI	NMI	CA	Silhouette batch	kBET	Graph connectivity	PCR comparison		
GraphST STAligner CAST	0.23 (0.02) 0.38 (0.03) 0.48 (0.07)	$0.42 (0.00) \\ 0.54 (0.03) \\ 0.52 (0.06)$	0.39 (0.01) 0.49 (0.02) 0.59 (0.06)	$0.56 (0.00) \\ 0.62 (0.04) \\ 0.45 (0.02)$	$0.02 (0.01) \\ 0.11 (0.08) \\ 0.11 (0.02)$	$0.65 (0.02) \\ 0.85 (0.04) \\ 0.81 (0.06)$	0.00 (0.00) 0.18 (0.10) 0.97 (0.03)		
Spotscape (w/o \mathcal{L}_{PCL}) Spotscape (w/o \mathcal{L}_{SS}) Spotscape	0.61 (0.03) 0.47 (0.09) 0.72** (0.04)	0.71 (0.01) 0.60 (0.04) 0.76** (0.01)	0.70 (0.02) 0.59 (0.06) 0.81** (0.05)	0.67 (0.01) 0.24 (0.01) 0.69** (0.01)	0.03 (0.00) 0.00 (0.00) 0.08 (0.02)	0.79 (0.03) 0.63 (0.00) 0.86 (0.03)	0.50 (0.04) 0.00 (0.00) 0.60 (0.08)		

All experiments are repeated over 10 runs with different random seeds, and we report the mean and standard deviation of the results. For all experimental results, **Bold** indicates the best performance, <u>underlining</u> denotes the second-best, and an asterisk (*) marks statistically significant improvements of Spotscape over the top-performing baseline based on a paired t-test (**: p < 0.01, *: p < 0.05), with the numbers in parentheses representing the standard deviation.

Alignment

	LTARI
PASTE2	0.21 (0.02)
CAST	0.10 (0.00)
STAligner	<u>0.46</u> (0.01)
SLAT	0.41 (0.11)
Spotscape	0.51** (0.01)

- Homogeneous Integration: Consistently outperforms all baseline methods when integrating multiple tissue slices from the same patient sample
- Heterogeneous Integration: Integrates diverse samples (e.g., Control vs. AD) by correcting batch effects, significantly outperforming competitors
- Multi-slice Alignment: Outperforms even specialized tools, successfully aligning slices across different developmental stages and technologies

DEG Analysis

Negative Regulation Of Apoptotic Process (GO:0043066) -Response To Unfolded Protein (GO:0006986) Chaperone Cofactor-Dependent Protein Refolding (GO:0051085) -Chaperone-Mediated Protein Complex Assembly (GO:0051131) -'De Novo' Post-Translational Protein Folding (GO:0051084) -Regulation Of Inclusion Body Assembly (GO:0090083) Negative Regulation Of Trophoblast Cell Migration (GO:1901164) -Microglial Cell Activation (GO:0001774) -Regulation Of Trophoblast Cell Migration (GO:1901163) Adjusted P-value Negative Regulation Of Cellular Component Organization (GO:0051129) -Synapse Pruning (GO:0098883) Protein Stabilization (GO:0050821) -0.001 Negative Regulation Of Cell Migration (GO:0030336) -Positive Regulation Of Cytokine Production (GO:0001819) -Negative Regulation Of Inclusion Body Assembly (GO:0090084) -0.002 Positive Regulation Of Neuron Death (GO:1901216) -Negative Regulation Of Protein Metabolic Process (GO:0051248) -Negative Regulation Of Protein Catabolic Process (GO:0042177) -Negative Regulation Of Neuron Apoptotic Process (GO:0043524) -Chemical Synaptic Transmission (GO:0007268) -Regulation Of Neuron Death (GO:1901214) -Positive Regulation Of Endocytosis (GO:0045807) -Synapse Organization (GO:0050808) -Regulation Of Neuron Apoptotic Process (GO:0043523) -Negative Regulation Of Peptidase Activity (GO:0010466) -0.2 0.4 0.6 Gene ratio

Figure 29. Top 25 biological process that DEGs between AD and Control enriched in a cluster assigned to layer 2.

Figure 30. Top 25 biological process that DEGs between AD and Control enriched in a cluster assigned to layer 5.

• Biological Validation: Gene analysis of Control vs. Alzheimer's samples validates Spotscape's findings, as it correctly identified distinct early-stage (Layer 2) and late-stage (Layer 5) disease pathologies that align with known AD progression

Ablation study

Running-time analysis

- Ablation Study: Removing key modules confirms their necessity; the Similarity Telescope (global context), Prototypical Contrastive Learning (grouping), and Similarity Scaling (batch effect) are all critical for performance, while reconstruction loss primarily prevents degenerate solutions
- Scalability: Spotscape is fast and practical for high-throughput analysis, showing efficient training times on datasets up to 100,000 spots

Conclusion

Limitations of previous works

- Harnessing relationships between only spatially close (local) points provides insufficient information to learn accurate representation
- Focusing on either spatial domain identification for a single slice or integration across multiple slices

Contributions of Spotscape

- Reflecting global relationship information by learning robust similarities w.r.t. augmentations
- Alleviate batch effects by explicitly balancing the intra- and inter- similarity

Global Context-aware Representation Learning for Spatially Resolved Transcriptomics

Paper: https://arxiv.org/abs/2506.15698

Code: https://github.com/yunhak0/Spotscape

Email: yunhak.oh@kaist.ac.kr

