Enforcing ldempotency in Neural Networks
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Why should | care about idempotency?

f: X — X is idempotent if it can be applied multiple times with
no effect beyond the first application.

Some examples:

» Image generation

Sorting algorithms
Denoising
Data compression
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What's the normal way?

Let f: R™ — R"™ be the network, then for a sample x € R™*", we
can minimize the quantity

['idem (X) =

Some problems with this:
» Even for tiny networks we get relatively poor improvements.

» For deep networks, Vi Ligem becomes unwieldy if
memoization is not employed.



An idea from Perturbation Theory

Let K be an “almost” idempotent matrix.
Up to some power j we define the ansatz
K =K+ aK* + - + oK’

If we demand K’ satisfies (K')?> — K’ = 0 (i.e., it is idempotent),
then we can solve for a; such that K’ = g(K).

We impose that g must “make K idempotent”.

NB: Assume that €2 = 0, P? = P, and eMe = 0 for all M,
reducing the number of terms.



The solution
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Figure: Plot of K’ = 3K? — 2K?3 in the case K is a scalar.

This has nice properties:
1. All idempotent matrices are solutions,
2. Only idempotent matrices are attracting points,

3. Wide area of attraction around idempotent points.



A general training scheme

Our iterator describes a desired change in the output y = f(x) of
the network:

y' =3f(y) - 2f(f(y))
Afx)=y' -y

A simple training scheme therefore takes

I(—L(y))

o = a1

throughout the computational graph.

This is architecture agnostic.



Improved efficacy

Ordinary Backpropagation

Modified Backpropagation
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Optimisation trajectory
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Generative results
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Replicating result of Shocher et al. 2023
“Idempotent Generative Network"
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