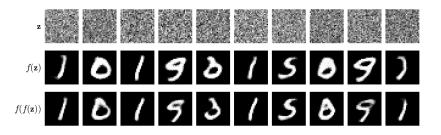
Enforcing Idempotency in Neural Networks

Nikolaj Banke Jensen¹ Jamie Vicary²

¹University of Oxford ²University of Cambridge



Presented at ICML 2025

Why should I care about idempotency?

 $f:X\to X$ is idempotent if it can be applied multiple times with no effect beyond the first application.

$$f(x) = f(f(x))$$

Some examples:

- Image generation
- ► Sorting algorithms
- Denoising
- ▶ Data compression
- **.**..

What's the normal way?

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be the network, then for a sample $\mathbf{x} \in \mathbb{R}^{m \times n}$, we can minimize the quantity

$$\mathcal{L}_{idem}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{m} (f(f(\mathbf{x}_i)) - f(\mathbf{x}_i))^2$$

Some problems with this:

- Even for tiny networks we get relatively poor improvements.
- ▶ For deep networks, $\nabla_{\mathbf{w}} \mathcal{L}_{idem}$ becomes unwieldy if memoization is not employed.

An idea from Perturbation Theory

Let \mathbf{K} be an "almost" idempotent matrix.

Up to some power j we define the ansatz

$$\mathbf{K}' = \alpha_1 \mathbf{K} + \alpha_2 \mathbf{K}^2 + \dots + \alpha_j \mathbf{K}^j$$

If we demand \mathbf{K}' satisfies $(\mathbf{K}')^2 - \mathbf{K}' = \mathbf{0}$ (i.e., it is idempotent), then we can solve for α_i such that $\mathbf{K}' = g(\mathbf{K})$.

We impose that g must "make ${\bf K}$ idempotent".

NB: Assume that $\varepsilon^2 = 0$, $\mathbf{P}^2 = \mathbf{P}$, and $\varepsilon \mathbf{M} \varepsilon = 0$ for all \mathbf{M} , reducing the number of terms.

The solution

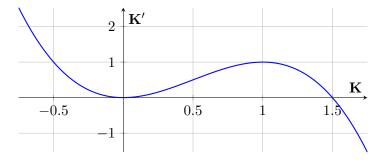


Figure: Plot of $\mathbf{K}' = 3\mathbf{K}^2 - 2\mathbf{K}^3$ in the case \mathbf{K} is a scalar.

This has nice properties:

- 1. All idempotent matrices are solutions,
- 2. Only idempotent matrices are attracting points,
- 3. Wide area of attraction around idempotent points.

A general training scheme

Our iterator describes a desired change in the output $\mathbf{y} = f(\mathbf{x})$ of the network:

$$\mathbf{y}' = 3f(\mathbf{y}) - 2f(f(\mathbf{y}))$$
$$\Delta f(\mathbf{x}) = \mathbf{y}' - \mathbf{y}$$

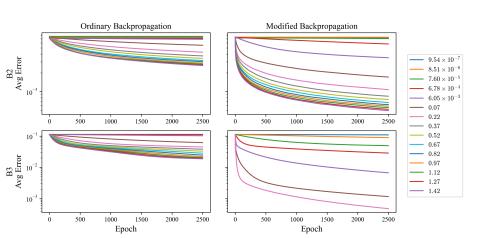
A simple training scheme therefore takes

$$\frac{\partial(-\mathcal{L}(\mathbf{y}))}{\partial\mathbf{y}} \equiv \Delta f(\mathbf{x})$$

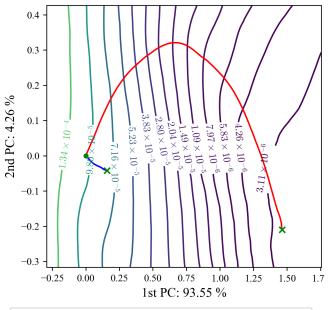
throughout the computational graph.

This is architecture agnostic.

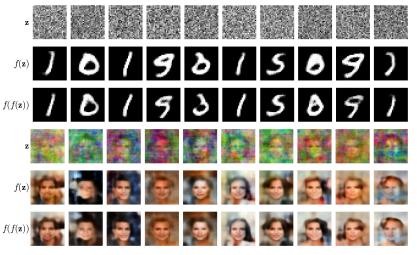
Improved efficacy



Optimisation trajectory



Generative results



Replicating result of Shocher et al. 2023 "Idempotent Generative Network"