### Enforcing Idempotency in Neural Networks

Nikolaj Banke Jensen<sup>1</sup> Jamie Vicary<sup>2</sup>

<sup>1</sup>University of Oxford <sup>2</sup>University of Cambridge



Presented at ICML 2025

# Why should I care about idempotency?

 $f:X\to X$  is idempotent if it can be applied multiple times with no effect beyond the first application.

$$f(x) = f(f(x))$$

#### Some examples:

- Image generation
- ► Sorting algorithms
- Denoising
- ▶ Data compression
- **.**..













# What's the normal way?

Let  $f: \mathbb{R}^n \to \mathbb{R}^n$  be the network, then for a sample  $\mathbf{x} \in \mathbb{R}^{m \times n}$ , we can minimize the quantity

$$\mathcal{L}_{idem}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{m} (f(f(\mathbf{x}_i)) - f(\mathbf{x}_i))^2$$

Some problems with this:

- Even for tiny networks we get relatively poor improvements.
- ▶ For deep networks,  $\nabla_{\mathbf{w}} \mathcal{L}_{idem}$  becomes unwieldy if memoization is not employed.

# An idea from Perturbation Theory

Let  $\mathbf{K}$  be an "almost" idempotent matrix.

Up to some power j we define the ansatz

$$\mathbf{K}' = \alpha_1 \mathbf{K} + \alpha_2 \mathbf{K}^2 + \dots + \alpha_j \mathbf{K}^j$$

If we demand  $\mathbf{K}'$  satisfies  $(\mathbf{K}')^2 - \mathbf{K}' = \mathbf{0}$  (i.e., it is idempotent), then we can solve for  $\alpha_i$  such that  $\mathbf{K}' = g(\mathbf{K})$ .

We impose that g must "make  ${\bf K}$  idempotent".

**NB**: Assume that  $\varepsilon^2 = 0$ ,  $\mathbf{P}^2 = \mathbf{P}$ , and  $\varepsilon \mathbf{M} \varepsilon = 0$  for all  $\mathbf{M}$ , reducing the number of terms.

### The solution



Figure: Plot of  $\mathbf{K}' = 3\mathbf{K}^2 - 2\mathbf{K}^3$  in the case  $\mathbf{K}$  is a scalar.

#### This has nice properties:

- 1. All idempotent matrices are solutions,
- 2. Only idempotent matrices are attracting points,
- 3. Wide area of attraction around idempotent points.

### A general training scheme

Our iterator describes a desired change in the output  $\mathbf{y} = f(\mathbf{x})$  of the network:

$$\mathbf{y}' = 3f(\mathbf{y}) - 2f(f(\mathbf{y}))$$
$$\Delta f(\mathbf{x}) = \mathbf{y}' - \mathbf{y}$$

A simple training scheme therefore takes

$$\frac{\partial(-\mathcal{L}(\mathbf{y}))}{\partial\mathbf{y}} \equiv \Delta f(\mathbf{x})$$

throughout the computational graph.

This is architecture agnostic.

### Improved efficacy



### Optimisation trajectory



#### Generative results



Replicating result of Shocher et al. 2023 "Idempotent Generative Network"