
Enforcing Idempotency in Neural Networks

Nikolaj Banke Jensen1 Jamie Vicary2

1University of Oxford
2University of Cambridge

Presented at ICML 2025



Why should I care about idempotency?

f : X → X is idempotent if it can be applied multiple times with
no effect beyond the first application.

f(x) = f(f(x))

Some examples:

▶ Image generation

▶ Sorting algorithms

▶ Denoising

▶ Data compression

▶ ...

f−→

f−→



What’s the normal way?

Let f : Rn → Rn be the network, then for a sample x ∈ Rm×n, we
can minimize the quantity

Lidem(x) =
1

n

m∑
i=1

(
f(f(xi))− f(xi)

)2
Some problems with this:

▶ Even for tiny networks we get relatively poor improvements.

▶ For deep networks, ∇wLidem becomes unwieldy if
memoization is not employed.



An idea from Perturbation Theory

Let K be an “almost” idempotent matrix.

Up to some power j we define the ansatz

K′ = α1K+ α2K
2 + · · ·+ αjK

j

If we demand K′ satisfies (K′)2 −K′ = 0 (i.e., it is idempotent),
then we can solve for αi such that K′ = g(K).

We impose that g must “make K idempotent”.

NB: Assume that ε2 = 0, P2 = P, and εMε = 0 for all M,
reducing the number of terms.



The solution

−0.5 0.5 1 1.5

−1

1

2

K

K′

Figure: Plot of K′ = 3K2 − 2K3 in the case K is a scalar.

This has nice properties:

1. All idempotent matrices are solutions,

2. Only idempotent matrices are attracting points,

3. Wide area of attraction around idempotent points.



A general training scheme

Our iterator describes a desired change in the output y = f(x) of
the network:

y′ = 3f(y)− 2f(f(y))

∆f(x) = y′ − y

A simple training scheme therefore takes

∂(−L(y))
∂y

≡ ∆f(x)

throughout the computational graph.

This is architecture agnostic.



Improved efficacy



Optimisation trajectory



Generative results

Replicating result of Shocher et al. 2023
“Idempotent Generative Network”


	Motivation
	Developing the iterator
	Experiments

