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Section 1

Background: Uncertainty in AI
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What is uncertainty

Uncertainty in artificial intelligence refers to the model’s lack of certainty
about its predictions. For example,

Classification: Output label along with its confidence
Regression: Output mean along with its variance.
LLM: perplexity, verbalized confidence, . . .

(a) Softmax confidence. (b) Verbalized confidence.
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Why we care about uncertainty?

Awareness of knowledge boundary: know what I know and know
what I don’t know.
hallucination detection, model cascade, slow and deep thinking. . .

Data selection for training/labeling: prioritizing samples in which the
model is uncertain or certain.
active learning, coreset selection, in-context learning. . .

Data privacy: identifying information leakage of sensitive data.
membership inference attacks, dataset inference, pretraining data detection. . .
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How to express uncertainty?

(a) Confidence calibration (b) Conformal prediction
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Section 2

Introduction to Conformal Prediction
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Conformal Prediction

Goal: For a given test input x, we aim to produce a prediction set C(x)
containing the true label y satisfying marginal coverage rate 1−α:

P(y ∈ C(x))≥ 1−α.

Larger prediction sets indicate higher uncertainty in the predictions.
Rigorous, finite-sample, for any model and dataset

8 / 27



Background: Uncertainty in AI Introduction to Conformal Prediction Tuning Bias in Conformal Prediction Future Work

Inductive Conformal Prediction

Given a calibration set Dcal = {(xi,yi)}n
i=1, and a trained model f ,

1 Compute non-conformity scores: s = S(x,y) for (x,y) ∈ Dcal
e.g., S(x,y) = 1− fy(x) for classification1

2 Obtain the threshold τ̂ of the scores:

τ̂ = Quantile
(
{s1, . . . ,sn},

⌈(n+1)(1−α)⌉
n

)
3 For a new test point xnew, the prediction set is:

C (xnew) = {y′ | S(xnew,y′)≤ τ̂}

The prediction set C (xnew) satisfies the marginal coverage if the calibration
and test sets are exchangeable.
Exchangeable data ⇒ exchangeable scores ⇒ marginal coverage.

1Lei, Jing. 2014. “Classification with Confidence.” Biometrika 101 (4): 755–69.
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The workflow of CP

Inductive conformal prediction with APS score
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Challenges of CP

If the exchangeability assumption is not satisfied?
The overlap between the training and calibration sets
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Section 3

Tuning Bias in Conformal Prediction
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Parameter Tuning

Parameter tuning with a hold-out set is common in deep learning:
downstream finetuning: SFT, prompt tuning, . . .
confidence calibration: temperature scaling, vector scaling, . . .
hyperparameter tuning: early stopping, model selection, . . .

The limited labeled data, when split, is often insufficient for effective tuning and CP.
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Parameter Tuning in Conformal Prediction

Reusing data for tuning and conformal prediction breaks exchangeability.
So, how does this violation impact the coverage guarantee?
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Tuning Bias

Definition (Tuning Bias)

Tuning bias is the additional coverage gap introduced by reusing the same
dataset for tuning and calibration:

TuningBias = CovGap(Csame)︸ ︷︷ ︸
Tune & Calibrate on same set

−CovGap(Chold-out)︸ ︷︷ ︸
Tune on separate set

,

where CovGap(C) measures the difference between the desired and
achieved coverages:

CovGap(C) = |(1−α)−P(y ∈ C(x))|

Former theoretical results imply that reusing data in parameter tuning and
conformal calibration causes large tuning bias. Is it always true?
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Tuning Bias is not always increased

Figure: Tuning bias for various tuning methods

The bias seems related to the complexity of the parameter space being tuned.
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The parametric scaling law of tuning bias
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(b) Bias vs. Calibration Set Size.

Tuning bias increases with the number of tuning parameters, and decreases
as the calibration set size grows.
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A general bound on the coverage gap

Theorem (Thm. 4.1)

When reusing data for tuning, the coverage gap is bounded by:

CovGap(C)≤ ERΛ︸ ︷︷ ︸
Tuning Bias Term

+ εα,n︸︷︷︸
Standard CP Gap

where εα,n = ⌈(n+1)(1−α)⌉/n−α , RΛ is the supremum deviation of
empirical probabilities from true probabilities over the entire parameter
space Λ and F :

RΛ := sup
λ∈Λ,t∈T

∣∣∣∣∣1n n

∑
i=1

1{Sλ (xi,yi)≤ t}−P(Sλ (x,y)≤ t)

∣∣∣∣∣
The tuning bias is bounded by ERΛ.
This term depends on the complexity of the parameter space Λ.
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Theoretical results of the scaling law (I)

Finite Parameter Space (e.g., RAPS with grid search)

Proposition (Simplified from Prop. 4.2)

TuningBias = O

(√
log(|Λ|)

n

)
where |Λ| is the number of candidate parameters.

This bound shows that tuning bias grows with the logarithm of the number
of parameters and decreases with calibration set size. For example, RAPS
with a finite grid: Parameter space Λ is a finite grid. Then the bound

∼
√

log(|Λ|)
n is small ⇒ Negligible tuning bias.
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Theoretical results of the scaling law (II)

Infinite Parameter Space (e.g., VS, fine-tuning)

Proposition (Simplified from Prop. 4.4)

TuningBias = O

(√
d
n

)
where d is the dimension of the parameter space (related to VC-dimension).

For example, confidence calibration like TS and VS with infinite parameter
space: TS tunes only one parameter, the temperature (d = 1), and its bound

∼
√

1
n and VS tunes 2K parameters (d = 2K), its bound ∼

√
2K
n ≥

√
1
n .
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How to mitigate tuning bias?

The scaling law points to two main strategies:
1 Increase the size of the calibration set
2 Reduce Parameter Space Complexity: Regularization, e.g, order

preserving, weight sharing.

Table: Tuning bias (%) comparison on CIFAR-100 & ImageNet.

Methods CIFAR-100 (%) ImageNet (%)

Temperature scaling 0.14 0.04
Vector scaling 1.13 6.63

ConfTr (ft.) w/ Order-Preserving 0.52 0.40
ConfTr (ft.) w/o Order-Preserving 6.15 21.68
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Take away

1 Tuning bias is not always significant when reusing data for tuning and
CP: scales with parameter complexity and inversely with data size

2 Data splitting might be unnecessary when the size is sufficiently large
3 Designing a specific regularization can mitigate the tuning bias
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Section 4

Future Work
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Open problems of conformal prediction

New CP paradigms for generative models: large language models,
vision language models, diffusion models, etc.

Beyond exchangeability: distribution shift, open-vocabulary tasks, etc.

Conditional CP: class-conditional CP, group-conditional CP, etc.
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Thank You!

Code in https://github.com/ml-stat-Sustech/
Parametric-Scaling-Law-CP-Tuning
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