scSSL-Bench: Benchmarking Self-Supervised
Learning for Single-Cell Data
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Motivation

 Why is genomics analysis an important research direction?
e Profile cells at different resolutions and modalities

 Understand diseases, develop personalized treatments, trace origins of
conditions like cancer and autoimmune disorders

 What is single-cell data”?

* High-dimensional gene expression ( ) levels in individual cells

* Additional molecular features measured together with

e Protein levels

e Open chromatin accessibility
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Why is a Benchmark Needed?

o Self-supervised learning (SSL) is a powerful approach for the representation
extraction from single-cell data

e Research questions:

 Benchmark if specialized single-cell SSL methods outperform generic
methods

* Assess hyperparameters and augmentation techniques of generic SSL
approaches

* Evaluate if genomics benefit from techniques proposed for images
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scSSL-Bench Design
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Downstream Tasks on Learned Cell Representations

« Batch effect correction ~ R

Batch Cell Type

e Reduce technical biases introduced while

seqguencing -
. . . - J
* Preserve true biological signal
~ A
o Ce" typing Cell Type (2) Unknown
AR GH| | B
 Annotate cells of hold-out dataset by mapping I A’A@é A@
them to seen cells L y
 Missing modality prediction ~ R
S ZA
* |Infer unmeasured modalities for the hold-out Sl %
dataset Y| | 2
N Y

ICML 2025. Olga Ovcharenko



Conclusions

» Specialized single-cell SSL methods work better for uni-modal data
 scVI, CLAIRE, fine-tuned scGPT

* Generic SSL methods succeed in multi-modal single-cell data integration
« SIMCLR, VICReg

 Masking is the best augmentation technique

 Moderately-sized embeddings lead to better results
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