Federated Oriented Learning (FOL): A Practical One-Shot Personalized Federated Learning Framework Guan Huang and Tao Shu **ICML 2025** July 13, 2025 Presenter: Guan Huang ### **Introduction and Motivation** #### 1. What is Personalized Federated Learning (PFL)? - Each client trains a local model on its own private data. - Shared knowledge is used to adapt a global model into a personalized one for each client. - Results in higher accuracy on non-IID local distributions than a single global model. #### 2. Why is one-shot PFL Essential? - Intermittent Connectivity (e.g., LEO satellites, remote IoT): clients often get only one brief window to exchange models. - **Communication Cost:** multiple rounds increase total data transfer and latency—especially costly on low-bandwidth or energy-limited links. - **Need for Local Personalization:** with a single exchange—using alignment, pruning, and distillation—clients can still achieve high local accuracy without multiple back-and-forths. **Fig 1. Image Source:** Screenshot from https://www.gps.gov/multimedia/images/constellation.jpg. Retrieved [6/4, 2025]. ### **Related Work & Limitations** #### 1. One-Shot Federated Learning - Synthetic Data Methods - Server synthesizes proxy data to train a single global model in one communication round. - Ensemble/Distillation Methods - Clients send snapshots once; server ensembles or distills into a single global model. - Limitation - All clients receive the same model no per-client personalization. #### 2. Personalized Federated Learning (PFL) - Optimization-Based - Clients refine a shared model over multiple rounds using regularization, dynamic aggregation, or second-order updates. - Parameter-Decoupling - Divides the model into a shared backbone and a local head, requiring multiple rounds of updates to obtain a tailored model. - Limitation. - Require repeated communication impractical for LEO satellites or IoTs with limited contact ### **FOL Overview** Fig. 2 Architecture Overview 6/5/2025 ### **Model Alignment Process (1)** • **Fine-Tuning:** Each received neighbor model $\{\phi_j^{(e)}\}_{j=1}^Q$ is fine-tuned on the local training data: $$\phi_{j \to k}^{'(e)} = \arg \min_{\phi} \frac{1}{|\mathcal{D}_{\text{train}}^{k}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}_{\text{train}}^{k}} \ell(f_{j}(x_{i}; \phi), y_{i}),$$ where ϕ is initialized by $\phi \leftarrow \phi_j^{(e)}$. • Structured Pruning: Prune the model using an alignment-aware regularizer: Group-Lasso for Unshared Layers $$\min_{\substack{\tilde{\phi}_{j\to k}^{(e)}, \\ \{\alpha_{l}\}_{(l,l')\in\mathbb{L}_{\mathrm{shared}}(k,j), \\ \{\alpha_{u}\}_{u\in\mathbb{L}_{\mathrm{unshared}}(k,j)}}}} \frac{1}{|\mathcal{D}_{\mathrm{train}}^{k}|} \sum_{(x_{i},y_{i})\in\mathcal{D}_{\mathrm{train}}^{k}} \ell(f_{j}(x_{i};\tilde{\phi}_{j\to k}^{(e)},\{\alpha_{l}\},\{\alpha_{u}\}),y_{i})} \\ 1. \text{ Task Loss on Local Data}$$ $$+ \lambda_{p} \sum_{\underbrace{(l,l')\in\mathbb{L}_{\mathrm{shared}}(k,j)}} \sum_{i=1}^{m_{l}} \left\|\alpha_{l,i}\mathbf{W}_{l,i}^{(j\to k)} - \mathbf{W}_{l',i}^{k}\right\|_{2}^{2} \\ 2. \text{ Alignment Regularization (Shared Layers Only)}$$ $$+ \gamma_{\mathrm{shared}} \sum_{\underbrace{l\in\mathbb{L}_{\mathrm{shared}}(k,j)}} \left\|\alpha_{l}\odot\mathbf{W}_{l}^{(j\to k)}\right\|_{2,1} \\ 3. \text{ Group-Lasso for Shared Layers}$$ $$+ \gamma_{\mathrm{unshared}} \sum_{u\in\mathbb{L}_{\mathrm{unshared}}(k,j)} \left\|\alpha_{u}\odot\mathbf{W}_{u}^{(j\to k)}\right\|_{2,1},$$ where α is a gating vector, λ_p and γ are hyperparameters controlling the strength of the alignment regularization and the structured pruning, respectively. $\|\cdot\|_{2,1}$ represents the group-lasso norm. \odot denotes element-wise multiplication. ### **Model Alignment Process (2)** Post-Finetuning: Refine the pruned model to recover any lost accuracy. $$\phi_{j \to k}^{(e)} \leftarrow \arg \min_{\phi} \frac{1}{|\mathcal{D}_{\text{train}}^{k}|} \sum_{(x_i, y_i) \in \mathcal{D}_{\text{train}}^{k}} \ell(f_j(x_i; \phi), y_i),$$ where ϕ is initialized by $\tilde{\phi}_{j\to k}^{(e)}$. • Validation Scoring: Evaluate each post-tuned neighbor model $\phi_{j\to k}^{(e)}$ and the client's own model $\theta_k^{(e)-}$ on a local validation set $\mathcal{D}_{\mathrm{val}}^{k}$. $$\operatorname{score}_{k}^{(e)}(\theta) = \frac{1}{|\mathcal{D}_{\operatorname{val}}^{k}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}_{\operatorname{val}}^{k}} \mathbb{1}(\operatorname{arg\,max} f(x_{i}; \theta) = y_{i}),$$ where $\mathbb{1}(\cdot)$ is the indicator function. • **Top-K Selection Prep:** Rank all candidates by validation score (break ties using cosine similarity) for the next ensemble stage. $$\begin{split} \{s_i^{(e)}\}_{i=1}^K &= \text{TopK}(CB, \{\phi_{j \to k}^{(e)}\}_{j=1}^Q \cup \{\theta_k^{(e)-}\}, \\ \{\text{score}_k^{(e)}(\phi_{j \to k}^{(e)})\}_{j=1}^Q \cup \{\text{score}_k^{(e)}(\theta_k^{(e)-})\}, K), \end{split}$$ Where CB specifies that in the event of tied scores, models are further ranked using their cosine similarity to the local model. ### **Top-K Ensemble** → **Knowledge Distillation** #### **Top-K Ensemble (Teacher Construction)** Build a weighted ensemble of the top-K aligned models: $$A_{\mathbf{w}_{k}^{(e)}}(x; \{s_{i}^{(e)}\}_{i=1}^{K}) = \sum_{i=1}^{K} w_{i}^{(e)} \cdot f_{i}(x; s_{i}^{(e)}),$$ where the optimal weights $\mathbf{w}_k^{(e)}$ is computed by minimizing the following KL-based distillation loss: $$\mathbf{w}_{k}^{(e)} = \arg\min_{\mathbf{w}_{k}^{0}} \frac{1}{|\mathcal{D}_{\text{train}}^{k}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}_{\text{train}}^{k}} \ell(A_{\mathbf{w}_{k}^{0}}(x_{i}; \{s_{i}^{(e)}\}_{i=1}^{K}), y_{i}).$$ #### **Regularization-based Knowledge Distillation** • Distill the weighted ensemble $A_w^{(e)}$ into the client's student model $\theta_k^{(e)+}$ by minimizing following KL-based distillation loss: $$\mathcal{L}_{\mathrm{KD}}(\boldsymbol{\theta}_{k}^{(e)+}) = \frac{1}{|\mathcal{D}_{\mathrm{train}}^{k}|} \sum_{\boldsymbol{x}_{i} \in \mathcal{D}_{\mathrm{train}}^{k}} \mathrm{KL}\Big(\mathrm{softmax}\Big(\frac{A_{\mathbf{w}_{k}^{(e)}}(\boldsymbol{x}_{i})}{T}\Big) \parallel$$ softmax $$\left(\frac{f_k(x_i; \theta_k^{(e)+})}{T}\right) + \lambda \|\theta_k^{(e)+} - \theta_k^{(e)-}\|^2$$, where T > 0 controls the smoothness of the softmax distributions applied to the logits. ### **Theoretical Analysis** #### Theorem 1. Risk Discrepancy Bound. • Let $\theta_k^{(e)}$ be the student model obtained by minimizing the distillation loss $\mathcal{L}_{\text{KD}}(\theta_k^{(e)})$ on D_{train}^k . Then, for a C-class problem with L-Lipschitz cross-entropy loss, T>0, and softmax outputs in $(\alpha, 1-\alpha)$, the empirical risk discrepancy between the student and teacher models is bounded as follows: $$|R_{\mathrm{S}}(\theta_k^{(e)}) - R(A_{\mathbf{w}_k^{(e)}})| \le \frac{L \cdot CT}{\alpha(1-\alpha)} \cdot \left(\frac{\mathcal{L}_{\mathrm{KD}}(\theta_k^{(e)})}{2} + \frac{1}{8}\right).$$ ## Theorem 2. Convergence of Knowledge Distillation. • Suppose $\{\theta_k^r\}_{r=0}^R$ are generated by $\theta_k^{r+1} = \theta_k^r - \eta \nabla \mathcal{L}_{\mathrm{KD},k}(\theta_k^r, \xi_k^r)$, under standard assumptions that the distillation loss $L_{KD,k}$ is Ls-smooth and μ -strongly convex, and that the variance of the stochastic gradient is bounded by σ^2 , then for $r \geq 0$, and any step size $O < \eta < 1/Ls$, the following bound holds: $$\mathbb{E}[\|\theta_k^r - \theta_k^*\|^2] \le \gamma^r \|\theta_k^0 - \theta_k^*\|^2 + \sum_{\tau=0}^{r-1} \gamma^\tau \beta,$$ Where $\gamma = \left(1 - 2\eta\mu + \frac{L_s^3}{\mu}\eta^2\right)$, $\beta = \eta^2\sigma^2$, and θ_k^* is the minimizer of $L_{KD,k}$. ### **Experimental Setup** #### Datasets - Satellite imagery: Wildfire, Hurricane - Vision benchmarks: SVHN, CIFAR-10, CIFAR-100 #### Setup - Federated setting: 70 clients, non-IID partitioning ($\psi = 0.1, 0.3, 0.5, 0.7$) - One-shot: Each client communicates with neighbors only once #### Baselines • Local-only, FedAvg (global, multi-round), DENSE, Co-Boosting (one-shot global), FOL-A (FOL without distillation), FOL (with distillation) #### Metrics Client-level accuracy 6/5/2025 ### **Quantitative Results** Table 1. Test accuracies (%) on Wildfire and Hurricane ($\psi = 0.7$), reported as mean \pm std. | Dataset | | Wildfire | | Hurricane | | | | |--------------|------------------|------------------|------------------|------------------|------------------|------------------|--| | Satellite # | 13 | 28 | 48 | 35 | 32 | 44 | | | Methods | $\psi=0.7$ | | | | | | | | Local | 94.23 ± 1.84 | 94.12 ± 1.80 | 90.53 ± 1.57 | 86.93 ± 1.56 | 87.34 ± 1.60 | 89.82 ± 1.82 | | | FOL-A (E=1) | 97.19 ± 1.53 | 97.16 ± 1.24 | 95.97 ± 1.55 | 95.34 ± 1.42 | 96.18 ± 1.02 | 97.61 ± 1.68 | | | FOL-A (E=2) | 97.50 ± 1.12 | 97.52 ± 1.17 | 97.33 ± 1.23 | 96.59 ± 1.76 | 96.97 ± 1.41 | 97.87 ± 1.22 | | | FOL-A (E=3) | 97.53 ± 0.76 | 97.70 ± 0.98 | 97.99 ± 0.93 | 96.90 ± 1.09 | 97.47 ± 1.11 | 98.20 ± 1.03 | | | FOL (E=1) | 94.94 ± 1.38 | 95.21 ± 1.32 | 91.26 ± 1.62 | 90.09 ± 1.55 | 89.87 ± 0.69 | 91.62 ± 0.58 | | | FOL (E=2) | 95.23 ± 1.35 | 95.57 ± 0.72 | 91.60 ± 1.29 | 91.23 ± 1.57 | 91.77 ± 0.83 | 95.21 ± 1.49 | | | FOL (E=3) | 96.32 ± 0.96 | 95.75 ± 1.39 | 91.95 ± 1.31 | 92.26 ± 1.05 | 92.41 ± 1.68 | 95.81 ± 1.88 | | | FOL-AN (E=1) | 94.38 ± 1.86 | 94.86 ± 1.67 | 91.28 ± 1.82 | 88.24 ± 1.82 | 91.14 ± 1.13 | 92.81 ± 1.10 | | | FOL-AN (E=2) | 95.63 ± 1.40 | 95.04 ± 1.43 | 93.29 ± 1.51 | 90.09 ± 0.64 | 92.47 ± 1.86 | 94.01 ± 1.70 | | | FOL-AN (E=3) | 95.94 ± 0.71 | 96.45 ± 0.65 | 95.97 ± 1.43 | 93.19 ± 1.23 | 93.04 ± 1.19 | 96.41 ± 1.26 | | | FOL-N (E=1) | 93.44 ± 1.68 | 94.68 ± 1.79 | 88.59 ± 2.31 | 85.76 ± 1.85 | 89.22 ± 0.93 | 91.62 ± 1.19 | | | FOL-N (E=2) | 94.69 ± 0.53 | 94.86 ± 0.88 | 90.60 ± 1.01 | 89.16 ± 1.31 | 90.21 ± 1.28 | 92.22 ± 1.65 | | | FOL-N (E=3) | 95.31 ± 1.49 | 95.21 ± 0.98 | 91.95 ± 0.97 | 90.71 ± 0.59 | 90.51 ± 1.21 | 94.61 ± 0.73 | | | DENSE | 88.75 ± 1.91 | 87.41 ± 1.63 | 83.22 ± 1.57 | 67.49 ± 1.81 | 69.95 ± 1.70 | 73.05 ± 1.62 | | | Co-Boosting | 90.31 ± 1.26 | 89.19 ± 1.13 | 88.02 ± 1.25 | 72.14 ± 1.52 | 74.45 ± 1.72 | 74.04 ± 1.54 | | | FedAvg (E=1) | 73.19 ± 1.73 | 73.94 ± 1.96 | 68.18 ± 2.02 | 60.21 ± 1.73 | 62.03 ± 1.95 | 66.26 ± 1.62 | | | FedAvg (E=2) | 73.13 ± 1.91 | 72.29 ± 1.74 | 66.92 ± 1.55 | 59.44 ± 1.64 | 64.33 ± 1.33 | 69.88 ± 1.57 | | | FedAvg (E=3) | 74.61 ± 1.54 | 71.58 ± 1.16 | 68.48 ± 1.23 | 63.70 ± 0.71 | 65.16 ± 1.14 | 67.82 ± 0.92 | | Table 3. Test accuracies (%) on CIFAR-10, CIFAR-100, and SVHN, reported as mean \pm std. | Dataset | CIFAR-10 | CIFAR-100 | CATINI | | |--------------|------------------|------------------|------------------|--| | Dataset | CIFAR-10 | CIFAR-100 | SVHN | | | Satellite # | 9 | 14 | 21 | | | Methods | $\psi = 0.7$ | $\psi = 0.7$ | $\psi = 0.5$ | | | Local | 60.06 ± 1.97 | 30.41 ± 2.28 | 78.97 ± 1.75 | | | FOL-A (E=1) | 70.73 ± 2.09 | 46.32 ± 2.12 | 85.73 ± 1.63 | | | FOL-A (E=2) | 70.93 ± 1.16 | 47.72 ± 1.53 | 86.26 ± 1.28 | | | FOL-A (E=3) | 71.02 ± 0.73 | 49.24 ± 1.12 | 88.37 ± 0.92 | | | FOL (E=1) | 65.68 ± 2.14 | 37.31 ± 2.43 | 81.09 ± 1.54 | | | FOL (E=2) | 66.06 ± 1.05 | 37.43 ± 1.58 | 81.62 ± 1.36 | | | FOL (E=3) | 66.83 ± 0.82 | 39.42 ± 1.03 | 82.85 ± 1.18 | | | FOL-AN (E=1) | 61.77 ± 2.36 | 31.23 ± 2.31 | 79.62 ± 1.64 | | | FOL-AN (E=2) | 62.35 ± 1.31 | 31.58 ± 1.75 | 80.92 ± 1.41 | | | FOL-AN (E=3) | 63.01 ± 0.71 | 32.05 ± 1.68 | 83.15 ± 1.33 | | | FOL-N (E=1) | 59.68 ± 2.43 | 30.64 ± 2.57 | 80.04 ± 1.74 | | | FOL-N (E=2) | 60.44 ± 1.37 | 30.99 ± 1.74 | 80.39 ± 1.39 | | | FOL-N (E=3) | 61.49 ± 1.43 | 31.11 ± 2.12 | 81.15 ± 1.22 | | | DENSE | 61.68 ± 2.03 | 29.59 ± 2.53 | 69.53 ± 1.57 | | | Co-Boosting | 63.11 ± 1.98 | 33.45 ± 2.12 | 73.58 ± 1.48 | | | FedAvg (E=1) | 47.76 ± 2.63 | 12.16 ± 3.93 | 53.08 ± 2.32 | | | FedAvg (E=2) | 44.90 ± 2.45 | 12.75 ± 3.23 | 58.72 ± 1.79 | | | FedAvg (E=3) | 45.57 ± 1.79 | 12.40 ± 2.89 | 55.49 ± 1.93 | | Table 2. Test accuracies (%) on Wildfire and Hurricane ($\psi \in \{0.5, 0.3, 0.1\}$), reported as mean \pm std. | Dataset | Wildfire | | | Hurricane | | | | |--------------|------------------|------------------|------------------|------------------|------------------|------------------|--| | Satellite # | 32 | 43 | 48 | 8 | 26 | 44 | | | Methods | $\psi = 0.5$ | $\psi = 0.3$ | $\psi = 0.1$ | $\psi = 0.5$ | $\psi = 0.3$ | $\psi = 0.1$ | | | Local | 79.07 ± 1.71 | 90.37 ± 1.76 | 85.50 ± 2.16 | 86.77 ± 1.90 | 57.14 ± 2.87 | 77.78 ± 1.35 | | | FOL-A (E=1) | 95.35 ± 1.42 | 94.07 ± 1.89 | 90.63 ± 1.92 | 95.04 ± 1.70 | 90.48 ± 1.57 | 88.89 ± 1.92 | | | FOL-A (E=2) | 96.52 ± 1.02 | 94.92 ± 1.25 | 96.14 ± 1.16 | 95.34 ± 1.16 | 91.72 ± 1.26 | 91.67 ± 1.26 | | | FOL-A (E=3) | 97.67 ± 0.71 | 95.76 ± 0.85 | 96.88 ± 1.01 | 95.87 ± 1.03 | 93.65 ± 1.14 | 94.44 ± 0.87 | | | FOL (E=1) | 90.70 ± 1.75 | 90.68 ± 1.01 | 88.46 ± 1.99 | 89.26 ± 1.25 | 84.13 ± 1.57 | 83.33 ± 1.69 | | | FOL (E=2) | 91.96 ± 1.09 | 91.53 ± 1.78 | 90.63 ± 1.77 | 90.08 ± 1.74 | 85.71 ± 1.38 | 84.43 ± 1.92 | | | FOL (E=3) | 93.02 ± 1.22 | 92.37 ± 1.27 | 93.75 ± 1.40 | 90.91 ± 1.38 | 87.30 ± 1.07 | 86.11 ± 1.18 | | | FOL-AN (E=1) | 90.77 ± 1.38 | 91.53 ± 1.26 | 87.51 ± 2.32 | 91.34 ± 1.70 | 87.47 ± 2.55 | 86.73 ± 1.94 | | | FOL-AN (E=2) | 93.22 ± 1.85 | 93.22 ± 1.17 | 90.63 ± 1.69 | 92.56 ± 1.18 | 88.89 ± 1.91 | 88.67 ± 1.75 | | | FOL-AN (E=3) | 95.35 ± 1.25 | 94.07 ± 1.21 | 90.94 ± 1.14 | 93.39 ± 1.37 | 90.48 ± 1.55 | 91.39 ± 1.26 | | | FOL-N (E=1) | 86.05 ± 1.96 | 88.14 ± 1.67 | 85.13 ± 1.92 | 85.95 ± 1.95 | 76.19 ± 1.73 | 80.56 ± 2.11 | | | FOL-N (E=2) | 87.35 ± 1.41 | 89.83 ± 1.76 | 86.38 ± 2.07 | 86.74 ± 1.83 | 80.95 ± 1.94 | 81.94 ± 1.38 | | | FOL-N (E=3) | 90.54 ± 1.51 | 90.06 ± 1.59 | 88.47 ± 1.37 | 87.60 ± 1.49 | 82.54 ± 1.76 | 83.37 ± 1.56 | | | DENSE | 79.91 ± 1.73 | 78.63 ± 1.98 | 52.08 ± 2.03 | 61.10 ± 1.51 | 58.73 ± 1.43 | 46.14 ± 1.81 | | | Co-Boosting | 86.05 ± 1.68 | 85.59 ± 1.65 | 54.51 ± 1.85 | 72.29 ± 1.68 | 52.38 ± 1.85 | 48.78 ± 1.50 | | | FedAvg (E=1) | 53.11 ± 1.82 | 63.25 ± 1.87 | 35.33 ± 2.76 | 66.12 ± 1.50 | 41.27 ± 1.99 | 46.14 ± 1.72 | | | FedAvg (E=2) | 56.03 ± 2.53 | 67.52 ± 1.92 | 45.16 ± 1.97 | 58.79 ± 1.86 | 45.16 ± 1.26 | 42.61 ± 1.86 | | | FedAvg (E=3) | 51.07 ± 1.93 | 66.10 ± 2.05 | 42.86 ± 1.53 | 60.33 ± 1.24 | 44.44 ± 1.76 | 43.33 ± 1.46 | | Table 4. Test accuracies (%) for six additional clients on the *Hurricane* dataset with $\psi = 0.7$. | Dataset | Hurricane | | | | | | |------------------------|-----------|-------|----------|-------------|-------|-------| | Satellite
Methods | 41 | 3 | $\psi =$ | 22
= 0.7 | 56 | 51 | | Local | 90.45 | 82.35 | 88.63 | 90.67 | 86.01 | 91.18 | | FOL-A (E=1) | 94.27 | 91.18 | 92.73 | 93.10 | 93.87 | 96.57 | | FOL-A (E=2) | 95.54 | 94.12 | 93.64 | 93.68 | 95.16 | 97.06 | | FOL-A (E=3) | 96.18 | 96.06 | 94.09 | 95.40 | 95.74 | 97.55 | | FOL (E=1) | 93.11 | 85.29 | 90.02 | 91.95 | 89.81 | 93.63 | | FOL (E=2) | 93.63 | 91.33 | 91.82 | 92.53 | 90.07 | 94.12 | | FOL (E=3) | 94.27 | 93.04 | 92.27 | 94.25 | 91.92 | 95.59 | | DENSE | 70.02 | 67.35 | 68.13 | 71.31 | 69.57 | 70.16 | | Co-Boosting | 74.61 | 69.16 | 72.51 | 73.63 | 75.21 | 74.47 | ### **Summary** - We propose **FOL**, a one-shot personalized federated learning framework tailored for constrained communication environments. - FOL integrates **model alignment**, **top-K ensemble**, and **regularization-based distillation** to deliver strong personalization in just one exchange. - We provide theoretical guarantees on risk bounds and convergence. - Experiments across **five diverse datasets and 70 clients** show that FOL outperforms baselines, especially under high data heterogeneity. - **Future work**: developing more advanced one-shot PFL techniques and integrate stronger privacy guarantees. # Thank you. Guan Huang PhD Student, Auburn University gzh0040@auburn.edu Tao Shu Associate Professor, Auburn University tshu@auburn.edu