



### Federated Oriented Learning (FOL): A Practical One-Shot Personalized Federated Learning Framework

Guan Huang and Tao Shu

**ICML 2025** 

July 13, 2025

Presenter: Guan Huang





### **Introduction and Motivation**

#### 1. What is Personalized Federated Learning (PFL)?

- Each client trains a local model on its own private data.
- Shared knowledge is used to adapt a global model into a personalized one for each client.
- Results in higher accuracy on non-IID local distributions than a single global model.

#### 2. Why is one-shot PFL Essential?

- Intermittent Connectivity (e.g., LEO satellites, remote IoT): clients often get only one brief window to exchange models.
- **Communication Cost:** multiple rounds increase total data transfer and latency—especially costly on low-bandwidth or energy-limited links.
- **Need for Local Personalization:** with a single exchange—using alignment, pruning, and distillation—clients can still achieve high local accuracy without multiple back-and-forths.



**Fig 1. Image Source:** Screenshot from https://www.gps.gov/multimedia/images/constellation.jpg. Retrieved [6/4, 2025].

### **Related Work & Limitations**

#### 1. One-Shot Federated Learning

- Synthetic Data Methods
  - Server synthesizes proxy data to train a single global model in one communication round.
- Ensemble/Distillation Methods
  - Clients send snapshots once; server ensembles or distills into a single global model.
- Limitation
  - All clients receive the same model no per-client personalization.

#### 2. Personalized Federated Learning (PFL)

- Optimization-Based
  - Clients refine a shared model over multiple rounds using regularization, dynamic aggregation, or second-order updates.
- Parameter-Decoupling
  - Divides the model into a shared backbone and a local head, requiring multiple rounds of updates to obtain a tailored model.
- Limitation.
  - Require repeated communication impractical for LEO satellites or IoTs with limited contact

### **FOL Overview**



Fig. 2 Architecture Overview

6/5/2025

### **Model Alignment Process (1)**

• **Fine-Tuning:** Each received neighbor model  $\{\phi_j^{(e)}\}_{j=1}^Q$  is fine-tuned on the local training data:

$$\phi_{j \to k}^{'(e)} = \arg \min_{\phi} \frac{1}{|\mathcal{D}_{\text{train}}^{k}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}_{\text{train}}^{k}} \ell(f_{j}(x_{i}; \phi), y_{i}),$$

where  $\phi$  is initialized by  $\phi \leftarrow \phi_j^{(e)}$ .

• Structured Pruning: Prune the model using an alignment-aware regularizer:

Group-Lasso for Unshared Layers

$$\min_{\substack{\tilde{\phi}_{j\to k}^{(e)}, \\ \{\alpha_{l}\}_{(l,l')\in\mathbb{L}_{\mathrm{shared}}(k,j), \\ \{\alpha_{u}\}_{u\in\mathbb{L}_{\mathrm{unshared}}(k,j)}}}} \frac{1}{|\mathcal{D}_{\mathrm{train}}^{k}|} \sum_{(x_{i},y_{i})\in\mathcal{D}_{\mathrm{train}}^{k}} \ell(f_{j}(x_{i};\tilde{\phi}_{j\to k}^{(e)},\{\alpha_{l}\},\{\alpha_{u}\}),y_{i})} \\ 1. \text{ Task Loss on Local Data}$$

$$+ \lambda_{p} \sum_{\underbrace{(l,l')\in\mathbb{L}_{\mathrm{shared}}(k,j)}} \sum_{i=1}^{m_{l}} \left\|\alpha_{l,i}\mathbf{W}_{l,i}^{(j\to k)} - \mathbf{W}_{l',i}^{k}\right\|_{2}^{2} \\ 2. \text{ Alignment Regularization (Shared Layers Only)}$$

$$+ \gamma_{\mathrm{shared}} \sum_{\underbrace{l\in\mathbb{L}_{\mathrm{shared}}(k,j)}} \left\|\alpha_{l}\odot\mathbf{W}_{l}^{(j\to k)}\right\|_{2,1} \\ 3. \text{ Group-Lasso for Shared Layers}$$

$$+ \gamma_{\mathrm{unshared}} \sum_{u\in\mathbb{L}_{\mathrm{unshared}}(k,j)} \left\|\alpha_{u}\odot\mathbf{W}_{u}^{(j\to k)}\right\|_{2,1},$$

where  $\alpha$  is a gating vector,  $\lambda_p$  and  $\gamma$  are hyperparameters controlling the strength of the alignment regularization and the structured pruning, respectively.  $\|\cdot\|_{2,1}$  represents the group-lasso norm.  $\odot$  denotes element-wise multiplication.

### **Model Alignment Process (2)**

Post-Finetuning: Refine the pruned model to recover any lost accuracy.

$$\phi_{j \to k}^{(e)} \leftarrow \arg \min_{\phi} \frac{1}{|\mathcal{D}_{\text{train}}^{k}|} \sum_{(x_i, y_i) \in \mathcal{D}_{\text{train}}^{k}} \ell(f_j(x_i; \phi), y_i),$$

where  $\phi$  is initialized by  $\tilde{\phi}_{j\to k}^{(e)}$ .

• Validation Scoring: Evaluate each post-tuned neighbor model  $\phi_{j\to k}^{(e)}$  and the client's own model  $\theta_k^{(e)-}$  on a local validation set  $\mathcal{D}_{\mathrm{val}}^{k}$ .

$$\operatorname{score}_{k}^{(e)}(\theta) = \frac{1}{|\mathcal{D}_{\operatorname{val}}^{k}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}_{\operatorname{val}}^{k}} \mathbb{1}(\operatorname{arg\,max} f(x_{i}; \theta) = y_{i}),$$

where  $\mathbb{1}(\cdot)$  is the indicator function.

• **Top-K Selection Prep:** Rank all candidates by validation score (break ties using cosine similarity) for the next ensemble stage.

$$\begin{split} \{s_i^{(e)}\}_{i=1}^K &= \text{TopK}(CB, \{\phi_{j \to k}^{(e)}\}_{j=1}^Q \cup \{\theta_k^{(e)-}\}, \\ \{\text{score}_k^{(e)}(\phi_{j \to k}^{(e)})\}_{j=1}^Q \cup \{\text{score}_k^{(e)}(\theta_k^{(e)-})\}, K), \end{split}$$

Where CB specifies that in the event of tied scores, models are further ranked using their cosine similarity to the local model.

### **Top-K Ensemble** → **Knowledge Distillation**

#### **Top-K Ensemble (Teacher Construction)**

Build a weighted ensemble of the top-K aligned models:

$$A_{\mathbf{w}_{k}^{(e)}}(x; \{s_{i}^{(e)}\}_{i=1}^{K}) = \sum_{i=1}^{K} w_{i}^{(e)} \cdot f_{i}(x; s_{i}^{(e)}),$$

where the optimal weights  $\mathbf{w}_k^{(e)}$  is computed by minimizing the following KL-based distillation loss:

$$\mathbf{w}_{k}^{(e)} = \arg\min_{\mathbf{w}_{k}^{0}} \frac{1}{|\mathcal{D}_{\text{train}}^{k}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}_{\text{train}}^{k}} \ell(A_{\mathbf{w}_{k}^{0}}(x_{i}; \{s_{i}^{(e)}\}_{i=1}^{K}), y_{i}).$$

#### **Regularization-based Knowledge Distillation**

• Distill the weighted ensemble  $A_w^{(e)}$  into the client's student model  $\theta_k^{(e)+}$  by minimizing following KL-based distillation loss:

$$\mathcal{L}_{\mathrm{KD}}(\boldsymbol{\theta}_{k}^{(e)+}) = \frac{1}{|\mathcal{D}_{\mathrm{train}}^{k}|} \sum_{\boldsymbol{x}_{i} \in \mathcal{D}_{\mathrm{train}}^{k}} \mathrm{KL}\Big(\mathrm{softmax}\Big(\frac{A_{\mathbf{w}_{k}^{(e)}}(\boldsymbol{x}_{i})}{T}\Big) \parallel$$

softmax
$$\left(\frac{f_k(x_i; \theta_k^{(e)+})}{T}\right) + \lambda \|\theta_k^{(e)+} - \theta_k^{(e)-}\|^2$$
,

where T > 0 controls the smoothness of the softmax distributions applied to the logits.

### **Theoretical Analysis**

#### Theorem 1. Risk Discrepancy Bound.

• Let  $\theta_k^{(e)}$  be the student model obtained by minimizing the distillation loss  $\mathcal{L}_{\text{KD}}(\theta_k^{(e)})$  on  $D_{\text{train}}^k$ . Then, for a C-class problem with L-Lipschitz cross-entropy loss, T>0, and softmax outputs in  $(\alpha, 1-\alpha)$ , the empirical risk discrepancy between the student and teacher models is bounded as follows:

$$|R_{\mathrm{S}}(\theta_k^{(e)}) - R(A_{\mathbf{w}_k^{(e)}})| \le \frac{L \cdot CT}{\alpha(1-\alpha)} \cdot \left(\frac{\mathcal{L}_{\mathrm{KD}}(\theta_k^{(e)})}{2} + \frac{1}{8}\right).$$

## Theorem 2. Convergence of Knowledge Distillation.

• Suppose  $\{\theta_k^r\}_{r=0}^R$  are generated by  $\theta_k^{r+1} = \theta_k^r - \eta \nabla \mathcal{L}_{\mathrm{KD},k}(\theta_k^r, \xi_k^r)$ , under standard assumptions that the distillation loss  $L_{KD,k}$  is Ls-smooth and  $\mu$ -strongly convex, and that the variance of the stochastic gradient is bounded by  $\sigma^2$ , then for  $r \geq 0$ , and any step size  $O < \eta < 1/Ls$ , the following bound holds:

$$\mathbb{E}[\|\theta_k^r - \theta_k^*\|^2] \le \gamma^r \|\theta_k^0 - \theta_k^*\|^2 + \sum_{\tau=0}^{r-1} \gamma^\tau \beta,$$

Where  $\gamma = \left(1 - 2\eta\mu + \frac{L_s^3}{\mu}\eta^2\right)$ ,  $\beta = \eta^2\sigma^2$ , and  $\theta_k^*$  is the minimizer of  $L_{KD,k}$ .

### **Experimental Setup**

#### Datasets

- Satellite imagery: Wildfire, Hurricane
- Vision benchmarks: SVHN, CIFAR-10, CIFAR-100

#### Setup

- Federated setting: 70 clients, non-IID partitioning ( $\psi = 0.1, 0.3, 0.5, 0.7$ )
- One-shot: Each client communicates with neighbors only once

#### Baselines

• Local-only, FedAvg (global, multi-round), DENSE, Co-Boosting (one-shot global), FOL-A (FOL without distillation), FOL (with distillation)

#### Metrics

Client-level accuracy

6/5/2025

### **Quantitative Results**

Table 1. Test accuracies (%) on Wildfire and Hurricane ( $\psi = 0.7$ ), reported as mean  $\pm$  std.

| Dataset      |                  | Wildfire         |                  | Hurricane        |                  |                  |  |
|--------------|------------------|------------------|------------------|------------------|------------------|------------------|--|
| Satellite #  | 13               | 28               | 48               | 35               | 32               | 44               |  |
| Methods      | $\psi=0.7$       |                  |                  |                  |                  |                  |  |
| Local        | 94.23 ± 1.84     | 94.12 ± 1.80     | 90.53 ± 1.57     | 86.93 ± 1.56     | 87.34 ± 1.60     | 89.82 ± 1.82     |  |
| FOL-A (E=1)  | $97.19 \pm 1.53$ | $97.16 \pm 1.24$ | $95.97 \pm 1.55$ | $95.34 \pm 1.42$ | $96.18 \pm 1.02$ | $97.61 \pm 1.68$ |  |
| FOL-A (E=2)  | $97.50 \pm 1.12$ | $97.52 \pm 1.17$ | $97.33 \pm 1.23$ | $96.59 \pm 1.76$ | $96.97 \pm 1.41$ | $97.87 \pm 1.22$ |  |
| FOL-A (E=3)  | $97.53 \pm 0.76$ | $97.70 \pm 0.98$ | $97.99 \pm 0.93$ | $96.90 \pm 1.09$ | $97.47 \pm 1.11$ | $98.20 \pm 1.03$ |  |
| FOL (E=1)    | $94.94 \pm 1.38$ | $95.21 \pm 1.32$ | $91.26 \pm 1.62$ | $90.09 \pm 1.55$ | $89.87 \pm 0.69$ | $91.62 \pm 0.58$ |  |
| FOL (E=2)    | $95.23 \pm 1.35$ | $95.57 \pm 0.72$ | $91.60 \pm 1.29$ | $91.23 \pm 1.57$ | $91.77 \pm 0.83$ | $95.21 \pm 1.49$ |  |
| FOL (E=3)    | $96.32 \pm 0.96$ | $95.75 \pm 1.39$ | $91.95 \pm 1.31$ | $92.26 \pm 1.05$ | $92.41 \pm 1.68$ | $95.81 \pm 1.88$ |  |
| FOL-AN (E=1) | $94.38 \pm 1.86$ | $94.86 \pm 1.67$ | $91.28 \pm 1.82$ | $88.24 \pm 1.82$ | $91.14 \pm 1.13$ | $92.81 \pm 1.10$ |  |
| FOL-AN (E=2) | $95.63 \pm 1.40$ | $95.04 \pm 1.43$ | $93.29 \pm 1.51$ | $90.09 \pm 0.64$ | $92.47 \pm 1.86$ | $94.01 \pm 1.70$ |  |
| FOL-AN (E=3) | $95.94 \pm 0.71$ | $96.45 \pm 0.65$ | $95.97 \pm 1.43$ | $93.19 \pm 1.23$ | $93.04 \pm 1.19$ | $96.41 \pm 1.26$ |  |
| FOL-N (E=1)  | $93.44 \pm 1.68$ | $94.68 \pm 1.79$ | $88.59 \pm 2.31$ | $85.76 \pm 1.85$ | $89.22 \pm 0.93$ | $91.62 \pm 1.19$ |  |
| FOL-N (E=2)  | $94.69 \pm 0.53$ | $94.86 \pm 0.88$ | $90.60 \pm 1.01$ | $89.16 \pm 1.31$ | $90.21 \pm 1.28$ | $92.22 \pm 1.65$ |  |
| FOL-N (E=3)  | $95.31 \pm 1.49$ | $95.21 \pm 0.98$ | $91.95 \pm 0.97$ | $90.71 \pm 0.59$ | $90.51 \pm 1.21$ | $94.61 \pm 0.73$ |  |
| DENSE        | $88.75 \pm 1.91$ | $87.41 \pm 1.63$ | $83.22 \pm 1.57$ | $67.49 \pm 1.81$ | $69.95 \pm 1.70$ | $73.05 \pm 1.62$ |  |
| Co-Boosting  | $90.31 \pm 1.26$ | $89.19 \pm 1.13$ | $88.02 \pm 1.25$ | $72.14 \pm 1.52$ | $74.45 \pm 1.72$ | $74.04 \pm 1.54$ |  |
| FedAvg (E=1) | $73.19 \pm 1.73$ | $73.94 \pm 1.96$ | $68.18 \pm 2.02$ | $60.21 \pm 1.73$ | $62.03 \pm 1.95$ | $66.26 \pm 1.62$ |  |
| FedAvg (E=2) | $73.13 \pm 1.91$ | $72.29 \pm 1.74$ | $66.92 \pm 1.55$ | $59.44 \pm 1.64$ | $64.33 \pm 1.33$ | $69.88 \pm 1.57$ |  |
| FedAvg (E=3) | $74.61 \pm 1.54$ | $71.58 \pm 1.16$ | $68.48 \pm 1.23$ | $63.70 \pm 0.71$ | $65.16 \pm 1.14$ | $67.82 \pm 0.92$ |  |

Table 3. Test accuracies (%) on CIFAR-10, CIFAR-100, and SVHN, reported as mean  $\pm$  std.

| Dataset      | CIFAR-10         | CIFAR-100        | CATINI           |  |
|--------------|------------------|------------------|------------------|--|
| Dataset      | CIFAR-10         | CIFAR-100        | SVHN             |  |
| Satellite #  | 9                | 14               | 21               |  |
| Methods      | $\psi = 0.7$     | $\psi = 0.7$     | $\psi = 0.5$     |  |
| Local        | $60.06 \pm 1.97$ | $30.41 \pm 2.28$ | 78.97 ± 1.75     |  |
| FOL-A (E=1)  | $70.73 \pm 2.09$ | $46.32 \pm 2.12$ | $85.73 \pm 1.63$ |  |
| FOL-A (E=2)  | $70.93 \pm 1.16$ | $47.72 \pm 1.53$ | $86.26 \pm 1.28$ |  |
| FOL-A (E=3)  | $71.02 \pm 0.73$ | $49.24 \pm 1.12$ | $88.37 \pm 0.92$ |  |
| FOL (E=1)    | $65.68 \pm 2.14$ | $37.31 \pm 2.43$ | $81.09 \pm 1.54$ |  |
| FOL (E=2)    | $66.06 \pm 1.05$ | $37.43 \pm 1.58$ | $81.62 \pm 1.36$ |  |
| FOL (E=3)    | $66.83 \pm 0.82$ | $39.42 \pm 1.03$ | $82.85 \pm 1.18$ |  |
| FOL-AN (E=1) | $61.77 \pm 2.36$ | $31.23 \pm 2.31$ | $79.62 \pm 1.64$ |  |
| FOL-AN (E=2) | $62.35 \pm 1.31$ | $31.58 \pm 1.75$ | $80.92 \pm 1.41$ |  |
| FOL-AN (E=3) | $63.01 \pm 0.71$ | $32.05 \pm 1.68$ | $83.15 \pm 1.33$ |  |
| FOL-N (E=1)  | $59.68 \pm 2.43$ | $30.64 \pm 2.57$ | $80.04 \pm 1.74$ |  |
| FOL-N (E=2)  | $60.44 \pm 1.37$ | $30.99 \pm 1.74$ | $80.39 \pm 1.39$ |  |
| FOL-N (E=3)  | $61.49 \pm 1.43$ | $31.11 \pm 2.12$ | $81.15 \pm 1.22$ |  |
| DENSE        | $61.68 \pm 2.03$ | $29.59 \pm 2.53$ | $69.53 \pm 1.57$ |  |
| Co-Boosting  | $63.11 \pm 1.98$ | $33.45 \pm 2.12$ | $73.58 \pm 1.48$ |  |
| FedAvg (E=1) | $47.76 \pm 2.63$ | $12.16 \pm 3.93$ | $53.08 \pm 2.32$ |  |
| FedAvg (E=2) | $44.90 \pm 2.45$ | $12.75 \pm 3.23$ | $58.72 \pm 1.79$ |  |
| FedAvg (E=3) | $45.57 \pm 1.79$ | $12.40 \pm 2.89$ | $55.49 \pm 1.93$ |  |

Table 2. Test accuracies (%) on Wildfire and Hurricane ( $\psi \in \{0.5, 0.3, 0.1\}$ ), reported as mean  $\pm$  std.

| Dataset      | Wildfire         |                  |                  | Hurricane        |                  |                  |  |
|--------------|------------------|------------------|------------------|------------------|------------------|------------------|--|
| Satellite #  | 32               | 43               | 48               | 8                | 26               | 44               |  |
| Methods      | $\psi = 0.5$     | $\psi = 0.3$     | $\psi = 0.1$     | $\psi = 0.5$     | $\psi = 0.3$     | $\psi = 0.1$     |  |
| Local        | 79.07 ± 1.71     | 90.37 ± 1.76     | $85.50 \pm 2.16$ | 86.77 ± 1.90     | $57.14 \pm 2.87$ | $77.78 \pm 1.35$ |  |
| FOL-A (E=1)  | $95.35 \pm 1.42$ | $94.07 \pm 1.89$ | $90.63 \pm 1.92$ | $95.04 \pm 1.70$ | $90.48 \pm 1.57$ | $88.89 \pm 1.92$ |  |
| FOL-A (E=2)  | $96.52 \pm 1.02$ | $94.92 \pm 1.25$ | $96.14 \pm 1.16$ | $95.34 \pm 1.16$ | $91.72 \pm 1.26$ | $91.67 \pm 1.26$ |  |
| FOL-A (E=3)  | $97.67 \pm 0.71$ | $95.76 \pm 0.85$ | $96.88 \pm 1.01$ | $95.87 \pm 1.03$ | $93.65 \pm 1.14$ | $94.44 \pm 0.87$ |  |
| FOL (E=1)    | $90.70 \pm 1.75$ | $90.68 \pm 1.01$ | $88.46 \pm 1.99$ | $89.26 \pm 1.25$ | $84.13 \pm 1.57$ | $83.33 \pm 1.69$ |  |
| FOL (E=2)    | $91.96 \pm 1.09$ | $91.53 \pm 1.78$ | $90.63 \pm 1.77$ | $90.08 \pm 1.74$ | $85.71 \pm 1.38$ | $84.43 \pm 1.92$ |  |
| FOL (E=3)    | $93.02 \pm 1.22$ | $92.37 \pm 1.27$ | $93.75 \pm 1.40$ | $90.91 \pm 1.38$ | $87.30 \pm 1.07$ | $86.11 \pm 1.18$ |  |
| FOL-AN (E=1) | $90.77 \pm 1.38$ | $91.53 \pm 1.26$ | $87.51 \pm 2.32$ | $91.34 \pm 1.70$ | $87.47 \pm 2.55$ | $86.73 \pm 1.94$ |  |
| FOL-AN (E=2) | $93.22 \pm 1.85$ | $93.22 \pm 1.17$ | $90.63 \pm 1.69$ | $92.56 \pm 1.18$ | $88.89 \pm 1.91$ | $88.67 \pm 1.75$ |  |
| FOL-AN (E=3) | $95.35 \pm 1.25$ | $94.07 \pm 1.21$ | $90.94 \pm 1.14$ | $93.39 \pm 1.37$ | $90.48 \pm 1.55$ | $91.39 \pm 1.26$ |  |
| FOL-N (E=1)  | $86.05 \pm 1.96$ | $88.14 \pm 1.67$ | $85.13 \pm 1.92$ | $85.95 \pm 1.95$ | $76.19 \pm 1.73$ | $80.56 \pm 2.11$ |  |
| FOL-N (E=2)  | $87.35 \pm 1.41$ | $89.83 \pm 1.76$ | $86.38 \pm 2.07$ | $86.74 \pm 1.83$ | $80.95 \pm 1.94$ | $81.94 \pm 1.38$ |  |
| FOL-N (E=3)  | $90.54 \pm 1.51$ | $90.06 \pm 1.59$ | $88.47 \pm 1.37$ | $87.60 \pm 1.49$ | $82.54 \pm 1.76$ | $83.37 \pm 1.56$ |  |
| DENSE        | $79.91 \pm 1.73$ | $78.63 \pm 1.98$ | $52.08 \pm 2.03$ | $61.10 \pm 1.51$ | $58.73 \pm 1.43$ | $46.14 \pm 1.81$ |  |
| Co-Boosting  | $86.05 \pm 1.68$ | $85.59 \pm 1.65$ | $54.51 \pm 1.85$ | $72.29 \pm 1.68$ | $52.38 \pm 1.85$ | $48.78 \pm 1.50$ |  |
| FedAvg (E=1) | $53.11 \pm 1.82$ | $63.25 \pm 1.87$ | $35.33 \pm 2.76$ | $66.12 \pm 1.50$ | $41.27 \pm 1.99$ | 46.14 ± 1.72     |  |
| FedAvg (E=2) | $56.03 \pm 2.53$ | $67.52 \pm 1.92$ | $45.16 \pm 1.97$ | $58.79 \pm 1.86$ | $45.16 \pm 1.26$ | $42.61 \pm 1.86$ |  |
| FedAvg (E=3) | $51.07 \pm 1.93$ | $66.10 \pm 2.05$ | $42.86 \pm 1.53$ | $60.33 \pm 1.24$ | $44.44 \pm 1.76$ | $43.33 \pm 1.46$ |  |

Table 4. Test accuracies (%) for six additional clients on the *Hurricane* dataset with  $\psi = 0.7$ .

| Dataset                | Hurricane |       |          |             |       |       |
|------------------------|-----------|-------|----------|-------------|-------|-------|
| Satellite #<br>Methods | 41        | 3     | $\psi =$ | 22<br>= 0.7 | 56    | 51    |
| Local                  | 90.45     | 82.35 | 88.63    | 90.67       | 86.01 | 91.18 |
| FOL-A (E=1)            | 94.27     | 91.18 | 92.73    | 93.10       | 93.87 | 96.57 |
| FOL-A (E=2)            | 95.54     | 94.12 | 93.64    | 93.68       | 95.16 | 97.06 |
| FOL-A (E=3)            | 96.18     | 96.06 | 94.09    | 95.40       | 95.74 | 97.55 |
| FOL (E=1)              | 93.11     | 85.29 | 90.02    | 91.95       | 89.81 | 93.63 |
| FOL (E=2)              | 93.63     | 91.33 | 91.82    | 92.53       | 90.07 | 94.12 |
| FOL (E=3)              | 94.27     | 93.04 | 92.27    | 94.25       | 91.92 | 95.59 |
| DENSE                  | 70.02     | 67.35 | 68.13    | 71.31       | 69.57 | 70.16 |
| Co-Boosting            | 74.61     | 69.16 | 72.51    | 73.63       | 75.21 | 74.47 |

### **Summary**

- We propose **FOL**, a one-shot personalized federated learning framework tailored for constrained communication environments.
- FOL integrates **model alignment**, **top-K ensemble**, and **regularization-based distillation** to deliver strong personalization in just one exchange.
- We provide theoretical guarantees on risk bounds and convergence.
- Experiments across **five diverse datasets and 70 clients** show that FOL outperforms baselines, especially under high data heterogeneity.
- **Future work**: developing more advanced one-shot PFL techniques and integrate stronger privacy guarantees.



# Thank you.



Guan Huang
PhD Student, Auburn University
gzh0040@auburn.edu



Tao Shu
Associate Professor, Auburn University
tshu@auburn.edu