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Introduction and Motivation

1. What is Personalized Federated Learning (PFL)?

Each client trains a local model on its own private data.

Shared knowledge is used to adapt a global model into a personalized
one for each client.

Results in higher accuracy on non-IID local distributions than a single
global model.

2. Why is one-shot PFL Essential?

Intermittent Connectivity (e.g., LEO satellites, remote loT): clients often
get only one brief window to exchange models.

Communication Cost: multiple rounds increase total data transfer and
latency—especially costly on low-bandwidth or energy-limited links.

Need for Local Personalization: with a single exchange—using
alignment, pruning, and distillation—clients can still achieve high local

accuracy without multiple back-and-forths.
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Fig 1. Image Source: Screenshot from
https://www.gps.gov/multimedia/images/constellation.jpg. Retrieved [6/4, 2025].



Related Work & Limitations

1. One-Shot Federated Learning
* Synthetic Data Methods

» Server synthesizes proxy data to train a single global model in one communication round.

* Ensemble/Distillation Methods
* Clients send snapshots once; server ensembles or distills into a single global model.

* Limitation
* All clients receive the same model — no per-client personalization.

2. Personalized Federated Learning (PFL)
* Optimization-Based
* Clients refine a shared model over multiple rounds using regularization, dynamic aggregation, or second-order updates.

* Parameter-Decoupling
* Divides the model into a shared backbone and a local head, requiring multiple rounds of updates to obtain a tailored model.

* Limitation.
* Require repeated communication — impractical for LEO satellites or loTs with limited contact



FOL Overview

(B-R-® -4

Pretrain Collect & Top-K Distill
Align Ensemble

Fig. 2 Architecture Overview
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Model Alignment Process (1)

*  Fine-Tuning: Each received neighbor model {q’)f,-e)}f:] is fine-tuned on the
local training data:
(e . 1
05 = argmin > S 9) ),

| lrair|| (mi,ya@)ED{r‘;

where ¢ is initialized by ¢ < ¢}
e Structured Pruning: Prune the model using an alignment-aware regularizer:
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4. Group-Lasso for Unshared Layers
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Model Alighment Process (2)

*  Post-Finetuning: Refine the pruned model to recover any lost accuracy.
1
¢§_>,k < arg mln D Z Uiz 0) )

lraml ( )EDk

train

where ¢ is initialized by gbj %P

*  Validation Scoring: Evaluate each post-tuned neighbor model 4{”,, and the client’s own
model 6\ on a local validation set D

val °

e 1
sc:ore,(C )(9) = DF | Z 1(argmax f(x;;0) = y;),
val (x4 ya)EDVql

where 1(-) is the indicator function.
 Top-K Selection Prep: Rank all candidates by validation score (break ties using cosine
similarity) for the next ensemble stage.

{(s{VE = TopK(CB, {¢'), 1%, u {67},

j—k

{scoregf)( pte) )} 1U{score(F (85)_)},1{),

3—>k

Where CB specifies that in the event of tied scores, models are further ranked using their cosine similarity to the local model.

6/5/2025



Top-K Ensemble = Knowledge Distillation

Top-K Ensemble (Teacher Construction)

* Build a weighted ensemble of the top-K aligned models:
K

RO S (©) . 4. (e
Aw}(ce)('rﬂ{si }1:1) ;w% fl(a:as; )a

)

where the optimal weights w,” is computed by minimizing the following KL-based distillation loss:

Wf:) = arg min lD,} Z E(Awg (T, {SZ(_‘:)}%K:I)S %)

0 i ’
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Regularization-based Knowledge Distillation

* Distill the weighted ensemble 4% into the client’s student model ¢© by minimizing following KL-
based distillation loss:

. 1
,CKL)((‘)J(G )+) = DE | Z KL (softmax(
ramn i EDl}I\:‘m

A (T4)
k

)

A ;/i:()(e)Jr e €e)—
softmax(w)) + A ||f],(c‘)+ - 9;({) ||2

where T > 0 controls the smoothness of the softmax distributions applied to the logits.



Theoretical Analysis

Theorem 1. Risk Discrepancy Bound.

. Let 6! be the student model obtained by minimizing the distillation loss cxp(#,”) on D., . Then, for a
C-class problem with L-Lipschitz cross-entropy loss, T>0, and softmax outputs in (a,1-a), the
empirical risk discrepancy between the student and teacher models is bounded as follows:

\ (e)
|RS(9;(€8)) - R(AW(“))l < _L-CT (M + é) '

N a(l—a) 2

Theorem 2. Convergence of Knowledge
Distillation.

. Suppose {8}y are generated by 4™ = 6 - nVLw.(¢, &), under standard assumptions that the
distillation loss Ly ,is Ls-smooth and u-strongly convex, and that the variance of the stochastic
gradient is bounded by o?,then for » > 0, and any step size 0<n<1/Ls, the following bound holds:

r—1
EI0, — 6%11°] < A7 1168 — 6217 + D 7 B,
7=0
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Where » = (1 - 200 + 2 #?). 8 = 7?02, and 0; is the minimizer of Ly .



Experimental Setup

Datasets
» Satellite imagery: Wildfire, Hurricane
* Vision benchmarks: SVHN, CIFAR-10, CIFAR-100

Setup
* Federated setting: 70 clients, non-IID partitioning (¢ = 0.1, 0.3, 0.5, 0.7)
* One-shot: Each client communicates with neighbors only once

Baselines

* Local-only, FedAvg (global, multi-round), DENSE, Co-Boosting (one-shot global), FOL-A (FOL without
distillation), FOL (with distillation)

Metrics
* Client-level accuracy



Quantitative Results

Table 1. Test accuracies (%) on Wildfire and Hurricane (3 = 0.7), reported as mean =+ std.

Table 2. Test accuracies (%) on Wildfire and Hurricane (3 € {0.5,0.3,0.1}), reported as mean =+ std.

Dataset Wildfire Hurricane

Satellite # 13 28 48 35 32 44
Methods P =10.7

Local 9423+ 184 94.12+180 9053+£157 8693+156 8734+£1.60 89.82+1.82
FOL-A (E=1) 97.19+1.53 97.16+1.24 95974155 9534+142 96.18+1.02 97.61+1.68
FOL-A (E=2) 9750+1.12 9752+1.17 9733+123 9659+1.76 9697+141 9787+1.22
FOL-A (E=3) 97.53+0.76 9770+ 098 9799+093 9690+1.09 9747+1.11 98.20+1.03
FOL (E=1) 9494+138 9521+132 91.26+1.62 90.09+155 8987+0.69 91.62+0.58
FOL (E=2) 9523+135 9557+0.72 91.60+1.29 91.23+157 91.77+0.83 9521+1.49
FOL (E=3) 9632+096 9575+139 9195+131 9226+1.05 9241+168 9581+1.88
FOL-AN (E=1) 9438+1.86 9486+167 91.28+1.82 88.24+1.82 91.14+1.13 9281%x1.10
FOL-AN (E=2) 95.63+1.40 95.04+143 93.29+1.51 90.09+0.64 9247+186 94.01+1.70
FOL-AN (E=3) 9594+£0.71 96.45+£065 9597+143 93.19+1.23 93.04+£1.19 9641+1.26
FOL-N (E=1) 93.44+1.68 9468+1.79 88.59+231 8576+1.85 89.22+093 91.62+1.19
FOL-N (E=2) 94.69+£053 9486+0.88 90.60+£1.01 89.16+131 90.21+£1.28 92.22+1.65
FOL-N (E=3) 9531+1.49 9521098 91.95+097 90.71+£0.59 9051+£1.21 94.61+£0.73
DENSE 88.75+191 87.41+1.63 83.22+1.57 6749+1.81 6995+1.70 73.05+1.62
Co-Boosting 9031+1.26 89.19+1.13 88.02+1.25 7214+152 7445+£1.72 74.04+£1.54
FedAvg (E=1) 73.19+1.73 7394+196 68.18+2.02 60.21+1.73 62.03+£1.95 66.26+1.62
FedAvg (E=2) 73.13+£191 7229+1.74 6692+155 5944+1.64 6433+£133 69.88+1.57
FedAvg (E=3) 7461 +1.54 7T1.58+1.16 6848+1.23 63.70+0.71 65.16+1.14 67.82+0.92

Dataset Wildfire Hurricane

Satellite # 32 43 48 8 26 44
Methods ¥ =0.5 =03 P =0.1 =05 P =0.3 P =0.1
Local 79.07+1.71 90.37+1.76 8550+2.16 86.77+190 57.14+287 77.78+1.35
FOL-A (E=1) 9535+142 94.07+1.89 9063192 9504+1.70 9048+157 88.80+1.92
FOL-A (E=2) 9652+ 102 9492+125 96.14+1.16 9534+1.16 91.72+126 91.67+1.26
FOL-A (E=3) 97.67+£0.71 9576 +0.85 96.88+1.01 95.87+1.03 93.65+1.14 94.44 (.87
FOL (E=1) 90.70+1.75 90.68+1.01 88.46+1.99 89.26+1.25 84.13+1.57 83.33+1.69
FOL (E=2) 9196+1.09 91.53+1.78 90.63+1.77 90.08+1.74 8571+138 8443+1.92
FOL (E=3) 93.02+1.22 92374127 [ 9375+140 9091+138 8730+1.07 | 86.11+1.18
FOL-AN (E=1) 90.77+1.38 91.53+1.26 87.51+232 9134+1.70 8747+255 86.73+1.94
FOL-AN (E=2) 93224185 9322+1.17 9063+169 9256+1.18 8889+191 8867+1.75
FOL-AN (E=3) 9535+1.25 94.07+1.21 9094+1.14 9339+1.37 9048+155 91.39+1.26
FOL-N (E=1) 86.05+196 88.14+1.67 8513+192 8595+195 76.19+1.73 80.56+2.11
FOL-N (E=2) 8735+141 89.83+1.76 8638+207 86.74+1.83 8095+194 81.94+1.38
FOL-N (E=3) 90.54+151 90.06+159 8847+137 87.60+149 8254+176 83.37+1.56
DENSE 7991+1.73 78.63+1.98 52.08+2.03 61.10+1.51 5873+143 46.14+1.81
Co-Boosting 86.05+1.68 8559+1.65 5451+£185 7229+1.68 5238+1.85 48.78+1.50
FedAvg (E=1) 53.11+1.82 63.25+1.87 3533+£276 66.12+150 4127+£199 46.14+1.72
FedAvg (E=2) 56.03+253 6752+192 4516+197 5879+186 4516+126 42.61+1.86
FedAvg (E=3) 51.07+£193 66.10+£2.05 4286+153 60.33+1.24 4444+£1.76 43.33+1.46
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Table 3. Test accuracies (%) on CIFAR-10, CIFAR-100, and
SVHN, reported as mean + std.

Dataset CIFAR-10 CIFAR-100 SVHN
Satellite # 21
Methods P =0.7 ¥ =0.7 P =05
Local 60.06 +1.97 3041+228 7T897+1.75
FOL-A (E=1) 70.73+2.09 46.32+2.12 8573+1.63
FOL-A (E=2) 7093 +1.16 47.72+1.53 86.26+1.28
FOL-A (E=3) 71.02+0.73 49.24 +1.12 88.37+0.92
FOL (E=1) 65.68+2.14 3731+£243 81.09+154
FOL (E=2) 66.06+1.05 3743+158 81.62+1.36
FOL (E=3) 66.83+£0.82 39.42+1.03 B8285+1.18
FOL-AN (E=1) 61.77+236 31.23+231 7962+164
FOL-AN (E=2) 6235%+1.31 3158+1.75 8092141
FOL-AN (E=3) 63.01+0.71 32.05+1.68 83.15+1.33
FOL-N (E=1) 59.68+243 30.64+257 80.04+1.74
FOL-N (E=2) 60.44 +1.37 30.99+1.74 80.39+1.39
FOL-N (E=3) 61.49+143 31.11+2.12 81.15+1.22
DENSE 61.68+2.03 29.59+253 69.53+1.57
Co-Boosting 63.11+198 3345+212 73.58+1.48
FedAvg (E=1) 4776+263 1216+393 53.08+232
FedAvg (E=2) 4490+£245 12.75+323 5872179
FedAvg (E=3) 4557+£179 1240+2.89 5549193

Table 4. Test accuracies (%) for six additional clients on the Hurricane dataset with ¢» = 0.7.

Dataset Hurricane

Satellite # 41 3 9 22 56 51
Methods P =0.7

Local 9045 8235 88.63 90.67 86.01 91.18
FOL-A (E=1) 94.27 91.18 9273 93.10 93.87 96.57
FOL-A (E=2) 9554 94.12 93.64 93.68 9516 97.06
FOL-A (E=3) 96.18 96.06 94.09 9540 9574 97.55
FOL (E=1) 93.11 85.29 90.02 9195 89.81 93.63
FOL (E=2) 93.63 91.33 91.82 9253 90.07 94.12
FOL (E=3) 94.27 93.04 9227 9425 9192 95.59
DENSE 70.02  67.35 68.13 71.31 69.57 70.16
Co-Boosting 7461  69.16 7251 73.63 7521 7447
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Summary

* We propose FOL, a one-shot personalized federated learning framework tailored for constrained
communication environments.

* FOL integrates model alignment, top-K ensemble, and regularization-based distillation to deliver
strong personalization in just one exchange.

* We provide theoretical guarantees on risk bounds and convergence.

* Experiments across five diverse datasets and 70 clients show that FOL outperforms baselines,
especially under high data heterogeneity.

* Future work: developing more advanced one-shot PFL techniques and integrate stronger privacy
guarantees.



Thank you.

Guan Huang Tao Shu
PhD Student, Auburn University Associate Professor, Auburn University
gzh0040@auburn.edu tshu@auburn.edu



https://guanhuang-rs.github.io/
https://guanhuang-rs.github.io/
https://eng.auburn.edu/users/tzs0058/
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