Generalization Analysis for Supervised Contrastive Representation Learning under Non-IID Settings

Nong Minh Hieu, Antoine Ledent

School of Computing and Information Systems, SMU Singapore

Contrastive learning overview

Figure: Visual illustration of contrastive learning

Contrastive Learning Overview

Problem Settings: Let $\mathcal X$ be the input space and $\mathcal C$ be the finite set of labels. Furthermore, denote

- ρ as the class distribution over C.
- \mathcal{D}_c as the class-conditional distribution given label $c \in \mathcal{C}$.
- $\bar{\mathcal{D}}_c$ as the class-conditional distribution given labels $\mathcal{C} \setminus \{c\}$.

Definition (Unsupervised Risk): Given a contrastive loss $\ell : \mathbb{R}^k \to [0, \mathcal{M}]$, the unsupervised risk is defined as

$$L_{\mathrm{un}}(f) = \underset{\substack{c \sim \rho \\ \mathbf{x}_{1:k}^{-} \sim \bar{\mathcal{D}}_{c}^{k}}}{\mathbb{E}} \left[\ell \left(\left\{ f(\mathbf{x})^{\top} \left[f(\mathbf{x}^{+}) - f(\mathbf{x}_{i}^{-}) \right] \right\}_{i=1}^{k} \right) \right]. \tag{1}$$

Contrastive Learning Overview

We are interested in the excess risk $\mathrm{ER}_{\mathrm{un}}(\widehat{f}_n) = \mathrm{L}_{\mathrm{un}}(\widehat{f}_n) - \inf_{f \in \mathcal{F}} \mathrm{L}_{\mathrm{un}}(f)$ where \widehat{f}_n is an empirical risk minimizer:

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{j=1}^n \ell\left(\left\{f(\mathbf{x}_j)^\top \left[f(\mathbf{x}_j^+) - f(\mathbf{x}_{ji}^-)\right]\right\}_{i=1}^k\right). \tag{2}$$

Previous works often assume that the tuples $\left\{ (\mathbf{x}_j, \mathbf{x}_j^+, \mathbf{x}_{j1:k}^-) \right\}_{j=1}^n$ are i.i.d. - A condition rarely met in practice.

Reality: Tuples are sub-sampled from a labeled dataset $S = \{(\mathbf{x}_j, \mathbf{y}_j)\}_{j=1}^N$.

Contrastive Learning Overview

In this work, we are interested in the excess risk bounds of $\widehat{f}_{\mathrm{sub}} = \arg\min_{f \in \mathcal{F}} \widehat{\mathcal{L}}(f; \mathcal{T}_{\mathrm{sub}})$ where:

$$\widehat{\mathcal{L}}(f; \mathcal{T}_{\text{sub}}) = \frac{1}{n} \sum_{j=1}^{n} \ell\left(\left\{f(\mathbf{z}_{j})^{\top} \left[f(\mathbf{z}_{j}^{+}) - f(\mathbf{z}_{ji}^{-})\right]\right\}_{i=1}^{k}\right).$$
(3)

Where $\mathcal{T}_{\text{sub}} = \left\{ (\mathbf{z}_j, \mathbf{z}_j^+, \mathbf{z}_{j1:k}^-) \right\}_{j=1}^M$ and each tuple is selected independently as:

- Select $c \in \mathcal{C}$ with probability $\widehat{\rho}(c) = \frac{N_c^+}{N}$.
- Select \mathbf{z}_j , \mathbf{z}_i^+ from class c without replacement.
- Select $\mathbf{z}_{i1}^-, \dots, \mathbf{z}_{ik}^-$ outside of class c without replacement.

U-Statistics Formulation

For each $c \in \mathcal{C}$ let \mathcal{S}_c be the set of data points from class c and $\bar{\mathcal{S}}_c = \mathcal{S} \setminus \mathcal{S}_c$. Then, we define the set of (k+2)-tuples \mathcal{T}_c as follows:

$$\mathcal{T}_{c} = \left\{ (\mathbf{z}, \mathbf{z}^{+}, \mathbf{z}_{1:k}^{-}) : \mathbf{z}, \mathbf{z}^{+} \in \mathcal{S}_{c}, \ \mathbf{z}_{1}^{-}, \dots, \mathbf{z}_{k}^{-} \in \bar{\mathcal{S}}_{c} \right\}. \tag{4}$$

Then, we use the following U-Statistics to estimate $L_{un}(f)$:

$$\mathcal{U}_{N}(f) = \sum_{c \in \mathcal{C}} \frac{N_{c}^{+}}{N} \mathcal{U}_{N}(f|c), \tag{5}$$

$$\mathcal{U}_{N}(f|c) = \frac{1}{\binom{N_{c}^{+}}{2} \times \binom{N-N_{c}^{+}}{k}} \sum_{(\mathbf{z},\mathbf{z}^{+},\mathbf{z}_{1,k}^{-}) \in \mathcal{T}_{c}} \ell\left(\left\{f(\mathbf{z})^{\top} \left[f(\mathbf{z}^{+}) - f(\mathbf{z}_{i}^{-})\right]\right\}_{i=1}^{k}\right). \tag{6}$$

Contributions

Our contributions are as follows:

- We derive excess risk bounds for $\widehat{f}_{\mathcal{U}} = \arg\min_{f \in \mathcal{F}} \mathcal{U}_N(f)$ and $\widehat{f}_{\mathrm{sub}} = \arg\min_{f \in \mathcal{F}} \widehat{\mathcal{L}}(f; \mathcal{T}_{\mathrm{sub}})$.
- We apply our bounds to linear maps and neural networks:

$$\mathcal{F}_{\text{lin}} = \left\{ \mathbf{x} \mapsto A\mathbf{x} : A \in \mathbb{R}^{d \times m}, \|A^{\top}\|_{2,1} \leqslant a, \|A\|_{\sigma} \leqslant s \right\}, \tag{7}$$

$$\mathcal{F}_{nn} = \mathcal{F}_{L} \circ \mathcal{F}_{L-1} \circ \cdots \circ \mathcal{F}_{1}, \tag{8}$$

where
$$\mathcal{F}_{l} = \left\{ \mathbf{x} \mapsto \varphi_{l} \left(A^{(l)} \mathbf{x} \right) : A^{(l)} \in \mathbb{R}^{d_{l-1} \times d_{l}}, \|A^{(l)}\|_{\sigma} \leqslant \mathsf{s}_{l} \right\}.$$

Assumption: We assume that the contrastive loss $\ell : \mathbb{R}^k \to [0, \mathcal{M}]$ is ℓ^{∞} -Lipschitz with constant $\eta > 0$.

Main Results

• Theorem 5.1: Let $\widehat{f}_{\mathcal{U}} = \arg\min_{f \in \mathcal{F}} \mathcal{U}_{N}(f)$. For any $\delta \in (0,1)$, with probability of at least $1 - \delta$:

$$\mathrm{ER}_{\mathsf{un}}(\widehat{f}_{\mathcal{U}}) \leqslant \mathcal{O}\left(\sum_{c \in \mathcal{C}} \rho(c) \frac{K_{\mathcal{F},c}}{\sqrt{\widetilde{N}}} + \mathcal{M}\sqrt{\frac{\ln |\mathcal{C}|/\delta}{\widetilde{N}}}\right)$$

where $\widetilde{N} = N \min \left(\frac{\rho_{\min}}{2}, \frac{1 - \rho_{\max}}{k} \right)$ and each term $K_{\mathcal{F},c}$ involves the covering number of \mathcal{F} .

Applications: Bounds for linear maps and neural networks.

Minimizer	Function Class	Generalization Bound
$\widehat{f}_{\mathcal{U}}$	Linear Maps	$\widetilde{\mathcal{O}}\left(rac{\eta extst{sab}^2}{\sqrt{\widetilde{N}}} + \mathcal{M}\sqrt{rac{\ln \mathcal{C} /\delta}{\widetilde{N}}} ight)$
$\widehat{f}_{\mathcal{U}}$	Neural Nets	$\widetilde{\mathcal{O}}\left(\frac{\mathcal{M}\mathcal{W}^{\frac{1}{2}}}{\sqrt{\widetilde{N}}}+\mathcal{M}\sqrt{\frac{\ln \mathcal{C} /\delta}{\widetilde{N}}}\right)$

Table: Generalization bounds for the U-Statistics minimizer.

Main Results

• Theorem 5.2: Let $\widehat{f}_{\mathrm{sub}} = \arg\min_{f \in \mathcal{F}} \widehat{\mathcal{L}}(f; \mathcal{T}_{\mathrm{sub}})$. For any $\delta \in (0, 1)$, with probability of at least $1 - \delta$:

$$\mathrm{ER}_{\mathsf{un}}(\widehat{f}_{\mathsf{sub}}) \leqslant \mathcal{O}\left(\widehat{\mathfrak{R}}_{\mathcal{T}_{\mathsf{sub}}}(\ell \circ \mathcal{F}) + \sum_{\boldsymbol{c} \in \mathcal{C}} \rho(\boldsymbol{c}) \frac{K_{\mathcal{F},\boldsymbol{c}}}{\sqrt{\widetilde{N}}} + \mathcal{M}\left[\sqrt{\frac{\ln|\mathcal{C}|/\delta}{\widetilde{N}}} + \sqrt{\frac{\ln 1/\delta}{M}}\right]\right)$$

where $\widetilde{N} = N \min\left(\frac{\rho_{\min}}{2}, \frac{1-\rho_{\max}}{k}\right)$ and each term $K_{\mathcal{F},c}$ involves the covering number of \mathcal{F} .

• Applications: Bounds for linear maps and neural networks.

Minimizer	Function Class	Generalization Bound
$\widehat{f}_{\mathrm{sub}}$	Linear Maps	$\widetilde{\mathcal{O}}\left(\eta sab^2\Big[rac{1}{\sqrt{\widetilde{N}}}+rac{1}{\sqrt{M}}\Big]+\mathcal{M}\Big[\sqrt{rac{\ln \mathcal{C} /\delta}{\widetilde{N}}}+\sqrt{rac{\ln 1/\delta}{M}}\Big] ight)$
$\widehat{f}_{\mathrm{sub}}$	Neural Nets	$\widetilde{\mathcal{O}}\left(\mathcal{M}\mathcal{W}^{\frac{1}{2}}\left[\frac{1}{\sqrt{\widetilde{N}}}+\frac{1}{\sqrt{M}}\right]+\mathcal{M}\left[\sqrt{\frac{\ln \mathcal{C} /\delta}{\widetilde{N}}}+\sqrt{\frac{\ln 1/\delta}{M}}\right]\right)$

Table: Generalization bounds for the sub-sampled empirical risk minimizer.

