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engineering
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Parameter-efficient 
Fine-tuning (PEFT)

……

• We cannot replace the fine-tuning procedure with prompts
• LoRA is a dominant solution now for PEFT



LoRA is widely used in industrial scenarios and are usually as 
the default setting of fine-tuning.

“We use LoRA…We represent the values of the adapter parameters using 16 bits, and 
for the ∼3 billion parameter on-device model, the parameters for a rank 16 adapter 
typically require 10s of megabytes.”

Apple Intelligence Foundation Language Models. Apple. Arxiv’24.



Low Rank Adaptation

Edward J. Hu. LoRA: Low-Rank Adaptation of Large Language Models. MSR, Arxiv’2021

𝑊 = 𝑊0 + 𝑩𝑨



Low Rank Adaptation

Parameter-efficient
Memory efficient

Computation efficient
during training

Edward J. Hu. LoRA: Low-Rank Adaptation of Large Language Models. MSR, Arxiv’2021



Low Rank Adaptation

Parameter-efficient
Memory efficient

Computation efficient
during training

Security Concerns of LoRA

As a fine-tuning strategy, dose LoRA lead to lower 
robustness against training-time attacks?

Edward J. Hu. LoRA: Low-Rank Adaptation of Large Language Models. MSR, Arxiv’2021



LoRA in ML Privacy and Security

◼LoRA as the tool of attacks
• Adversarial attacks: AdvLoRA: Adversarial Low-Rank Adaptation of Vision-

Language Models[ccs’24]
• Backdoor in LoRA: LoRA-as-an-Attack! Piercing LLM Safety Under The Share-

and-Play Scenario[2024.02 arxiv]
• Recover the pre-fine-tuning’s weights via LoRA: Recovering the Pre-Fine-

Tuning Weights of Generative Models [2024.07 arxiv]
• DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under 

Differentially Private Federated Learning using Dynamic Low-Rank Adaptation
◼LoRA arises fairness issue
• On Fairness of Low-Rank Adaptation of Large Models [2024.05 arxiv]



Targets

Is LoRA more vulnerable compared to FFT against
poisoning/backdoor attacks?

• an answer with theoretical analysis
• factors that influences LLM fine-tuning’s robustness
• ……



Training-time Attacks & Training-time Robustness

Poisoning method 𝑥 → ෤𝑥 𝑦 → ෤𝑦



Measuring the Training-time Robustness of
 Two Architectures is Difficult

Challenges:
• Dynamics of parameter updating during training.
• Improper metric design with L-inf norm.

𝑀(𝑓 𝑥; Θ , 𝐷, ෩𝐷) = 𝐸 (𝑫,෩𝑫)𝐸𝒕||ΔΘ − Δ෩Θ||∞

𝑀fft − 𝑀lora ?  0
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Challenges:
• Dynamics of parameter updating during training.
• Improper metric design with L-inf norm.

𝑀(𝑓 𝑥; Θ , 𝐷, ෩𝐷)
= 𝐸(𝑥, ෤𝑥)∼(𝐷, ෩𝐷)𝐸𝑡||ΔΘ − Δ෩Θ||∞

𝑀fft − 𝑀lora ?  0

Solution: A new analytical framework!



Theoretical Analysis

Modeling LoRA’s fine-tuning Procedure with NTK

Bridging Robustness and Model Structure via Information Geometry

Modeling the relationship of robustness between
 LoRA and full fine-tuning

𝑀(𝑓 𝑥; Θ , 𝐷, ෩𝐷) = 𝐸 (𝑫,෩𝑫)𝐸𝒕||ΔΘ − Δ෩Θ||∞



Notations

𝑦 𝑙 𝑥 =
1

𝑛𝑙
𝑊(𝑙) ⋅ 𝑥(𝑙)

𝑦𝑎
𝑙

𝑥 = 𝜙(𝑥(𝑙))

𝑥(0) = 𝑥; 𝑥(𝑙) = 𝑦𝑎
(𝑙−1)



Neural Tangent Kernel: Modeling the Learning Process

Arthur Jacot, Neural Tangent Kernel: Convergence and Generalization in Neural Networks. EPFL, NIPS’18

What is neural tangent kernel (NTK)?



Neural Tangent Kernel

𝐾ntk
(𝑙)

𝑋, 𝑋′; 𝜃 = ෍

𝑝=1

𝑃

𝜕𝜃𝑝
𝑦𝑎

𝑙
(𝑋; 𝜃𝑝)⨂𝜕𝜃𝑝

𝑦𝑎
𝑙

(𝑋′; 𝜃𝑝)

= ∇𝜃𝑦𝑎
𝑙

𝑋; 𝜃 𝑇 ⋅ ∇𝜃𝑦𝑎
𝑙

(𝑋′; 𝜃)

𝐾ntk
(𝑙)

𝑋, 𝑋′; 𝜃 : 𝑅𝑁×𝑛0 × 𝑅𝑁×𝑛0 × 𝑅𝑃 → 𝑅𝑛𝑙×𝑁×𝑁

𝐾ntk
(𝑙)

𝑋, 𝑋′; 𝜃 𝑚,𝑛 = 𝐾ntk
(𝑙)

𝑥𝑚, 𝑥𝑛; 𝜃

= ∇𝜃𝑦𝑎
𝑙

𝑥𝑚; 𝜃 𝑇 ⋅ ∇𝜃𝑦𝑎
𝑙

(𝑥𝑛; 𝜃)

𝑅𝑛𝑙×𝑃

𝑋, 𝑋′ ∈ 𝑅𝑁×𝑛0; 𝜃 ∈ 𝑅𝑃;

What does NTK express?

Arthur Jacot, Neural Tangent Kernel: Convergence and Generalization in Neural Networks. NIPS’18



Neural Tangent Kernel

What does NTK express?

The similarity (correlation) of the gradient descent direction 
caused by two variables for a given model state.
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Property of NTK:

• It is deterministic. Only relevant to model architectures and the 
initialization variance of parameters. 

• Keep constant during training



STEP 0. Pre-requirements

Empirical Observation

When prompt-based fine-tuning is used, fine-tuning a pre-trained 
language model stays within the NTK regime.

Malladi, S., Wettig. A kernel-based view of language model fine-tuning. ICML’23.



STEP I. Simplifying the Training-Time Robustness

𝑀(𝑓 𝑥; Θ , 𝐷, ෩𝐷) = 𝐸 (𝐷, ෩𝐷)𝐸𝑡||ΔΘ − Δ෩Θ||∞

𝑀fft − 𝑀lora ?  0
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෍
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Question: How to decouple datasets with model architecture?



STEP I. Simplifying the Training-Time Robustness

𝑀′ = 𝐸 𝑥, ෤𝑥 ∼ 𝐷, ෩𝐷 𝐾𝑛𝑡𝑘(𝑥, ෤𝑥)
Information Geometry

Model 
Architecture

(NTK formula)

Model’s 
Robustness

Zhao, C.  et al. The adversarial attack and detection under the fisher information metric. AAAI’19
Naddeo,K et al. Information geometric perspective to adversarial attacks and defenses. IJCNN’22
Rahmati,A.,  et al. A geometric framework for black-box adversarial attacks. CVPR’20
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STEP I. Simplifying the Training-Time Robustness

Information Geometry

Model 
Architecture

(NTK formula)

Model’s 
Robustness

Information Bits: 𝐼𝐵 =
1

2
log det

𝑝𝑠𝑒𝑢𝑑𝑜
𝐼𝜃 =

1

2
෍

𝜆>0

𝜆

𝐻𝛼 =
1

1 − 𝛼
log(෍

𝑖=1

𝑛𝐿

𝜆𝑖
𝛼)Renyi Entropy:

𝐼𝜃 = 𝐸𝑥∈𝐷∇𝜃𝐿 𝑥; 𝜃 𝑇𝐾𝑛𝑡𝑘(𝑥, 𝑥)∇𝜃𝐿 𝑥; 𝜃



Theoretical Analysis

Modeling LoRA’s fine-tuning Procedure with NTK

Bridging Robustness and Model Structure via Information Geometry

Modeling the relationship of robustness between
 LoRA and full fine-tuning



STEP II. NTK Relationship between LoRA and FF

𝐾𝐿𝑜𝑅𝐴
𝑙 = 𝐾𝑓𝑓

𝑙 + Δ𝑟
𝑙

Δ𝑟
𝑙 = 𝜙 𝑦 𝑙−1 𝑥

𝑇
(𝑨𝒍 𝑻𝑨𝒍 − 𝑰)[𝜙 𝑦 𝑙−1 𝑥𝑐 ]

𝑀Δ
𝑙 =  𝑨𝒍 𝑻𝑨𝒍 − 𝑰
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Theorem (𝑴𝚫
𝒍 ’sNegative Semi-Definiteness).

When the LoRA submatrix 𝐴𝑙 ∈ 𝑅𝑟×𝑛𝑙−1  is initialized with  variance 𝜎2, 

𝜎2 <
1

𝑛𝑙−1
, and 𝑟 ≤ 𝑛𝑙−1 then 𝑴𝚫

𝒍  is  a negative semi-definite matrix, 

with r eigenvalues  equal to 𝜎2 ⋅ 𝑛𝑙−1 and nl−1 − r eigenvalues  equal to 0.

𝜎2 =
1

3

1

𝑛𝑙−1
in official implications.
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Theorem (𝑴𝚫
𝒍 ’s Negative Semi-Definiteness).
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1
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, and 𝑟 = 𝑛𝑙−1 

  𝐾𝑓𝑓 = 𝐾𝐿𝑜𝑅𝐴, i.e., 𝑀Δ
𝑙 = 0.
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Theoretical Analysis

Modeling LoRA’s fine-tuning Procedure with NTK

Bridging Robustness and Model Structure via Information Geometry

Modeling the relationship of robustness between
 LoRA and full fine-tuning

Theoretical Analysis



STEP III. Analysis: Double Edged Sword of LoRA’s
Training-time Robustness

𝐼𝐵𝑓𝑓 ≥ 𝐼𝐵𝐿𝑜𝑅𝐴& 𝐻𝛼 𝑓𝑓 ≥ 𝐻𝛼 𝐿𝑜𝑅𝐴

LoRA Exhibits a Higher Training-time Robustness

Expersssive 
Ability

TTR



STEP III. Analysis: Double Edged Sword of LoRA’s
Training-time Robustness

Backdoor Poisoning Attacks



STEP III. Analysis: Double Edged Sword of LoRA’s
Training-time Robustness

𝐼𝐵𝑓𝑓 ≥ 𝐼𝐵𝐿𝑜𝑅𝐴

Lower Information Bits: Smaller space 
to contain the backdoor

More robust against backdoor attacks



STEP III. Analysis: Double Edged Sword of LoRA’s
Training-time Robustness

Untargeted Poisoning Attacks

Poison training samples to reduce 
the performance of trained models



STEP III. Analysis: Double Edged Sword of LoRA’s
Training-time Robustness

𝐻𝛼 𝑓𝑓 ≥ 𝐻𝛼 𝐿𝑜𝑅𝐴

Lower Renyi Entropy: Less learning 
ability to fit both the clean samples 
and the poisoned samples

More vulnerable against poisoning attacks



STEP III. Analysis: Double Edged Sword of LoRA’s
Training-time Robustness

LoRA: Excelling in Backdoor Defense
While Falling Short Against Untargeted Poisoning



LoRA: Excelling in Backdoor Defense
While Falling Short Against Untargeted Poisoning



STEP IV. Factors that Influence LoRA’s Training-time Robustness

Theorem (𝑴𝚫
𝒍 ’s Negative Semi-Definiteness).

When the LoRA submatrix 𝐴𝑙 ∈ 𝑅𝑟×𝑛𝑙−1  is initialized with  variance 𝜎2, 

𝜎2 <
1

𝑛𝑙−1
, and 𝑟 ≤ 𝑛𝑙−1 then 𝑴𝚫

𝒍  is  a negative semi-definite matrix, 

with r eigenvalues  equal to 𝜎2 ⋅ 𝑛𝑙−1 and nl−1 − r eigenvalues  equal to 0.

• Initialization Variance
• Rank

𝑀𝑟
𝑙 =  𝑨𝒍 𝑻𝑨𝒍 − 𝑰
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STEP IV. Factors that Influence LoRA’s Training-time Robustness

No obvious correlation of initialization variance in untargeted poisoning attacks.

The realistic fine-tuning procedure of LoRA does not strictly follows the NTK regime.



Conclusion

A theoretical framework to analyze the training-time robustness
 of given model structures;

Theoretically and empirically compare the robustness of LoRA
 with full fine-tuning under training-time attacks;

Reveal the influence of initialization variance and the rank
 to LoRA’s security.



Thanks for your attention!


