

Does Low Rank Adaptation Lead to Lower Robustness against Training-time Attacks?

Zi Liang, Haibo Hu*, Qingqing Ye, Yaxin Xiao, Ronghua Li

June, 2025

Outline

Introducing LoRA

Defining Training-time Attacks and Training-time Robustness

Theoretical Analysis and Evaluation

Conclusion

Downstream Adaptation of LLMs

In-context Learning

Parameter-efficient Fine-tuning (PEFT)

- We cannot replace the fine-tuning procedure with prompts
- LoRA is a dominant solution now for PEFT

LoRA is widely used in industrial scenarios and are usually as the default setting of fine-tuning.

"We use LoRA...We represent the values of the adapter parameters using 16 bits, and for the \sim 3 billion parameter on-device model, the parameters for a rank 16 adapter typically require 10s of megabytes."

Low Rank Adaptation

$$W = W_0 + BA$$

Low Rank Adaptation

Parameter-efficient

Memory efficient

Computation efficient

during training

Low Rank Adaptation

Parameter-efficient

Memory efficient

Computation efficient

during training

LoRA in ML Privacy and Security

■ LoRA as the tool of attacks

- Adversarial attacks: AdvLoRA: Adversarial Low-Rank Adaptation of Vision-Language Models[ccs'24]
- Backdoor in LoRA: LoRA-as-an-Attack! Piercing LLM Safety Under The Shareand-Play Scenario[2024.02 arxiv]
- Recover the pre-fine-tuning's weights via LoRA: Recovering the Pre-Fine-Tuning Weights of Generative Models [2024.07 arxiv]
- DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation

■LoRA arises fairness issue

On Fairness of Low-Rank Adaptation of Large Models [2024.05 arxiv]

Targets

Is LoRA more vulnerable compared to FFT against poisoning/backdoor attacks?

- an answer with theoretical analysis
- factors that influences LLM fine-tuning's robustness
- •

Training-time Attacks & Training-time Robustness

Poisoning method $x \to \tilde{x}$ $y \to \tilde{y}$

$$\mathbb{E}_{(\mathcal{D},\tilde{\mathcal{D}})}\mathbb{E}_t||\Delta\Theta(t) - \Delta\tilde{\Theta}(t)||_{\infty}$$

Measuring the Training-time Robustness of Two Architectures is Difficult

$$M(f(x; \Theta), D, \widetilde{D}) = E_{(D, \widetilde{D})} E_t ||\Delta \Theta - \Delta \widetilde{\Theta}||_{\infty}$$

$$M_{\rm fft} - M_{\rm lora}$$
? 0

Challenges:

- Dynamics of parameter updating during training.
- Improper metric design with L-inf norm.

Measuring the Training-time Robustness of Two Architectures is Difficult

$$M(f(x; \Theta), D, \widetilde{D})$$

$$= E_{(x,\widetilde{x}) \sim (D,\widetilde{D})} E_t ||\Delta \Theta - \Delta \widetilde{\Theta}||_{\infty}$$

$$M_{\text{fft}} - M_{\text{lora}} ? 0$$

Challenges:

- Dynamics of parameter updating during training.
- Improper metric design with L-inf norm.

Solution: A new analytical framework!

Theoretical Analysis

$$M(f(x; \Theta), D, \widetilde{D}) = E_{(D, \widetilde{D})} E_t ||\Delta \Theta - \Delta \widetilde{\Theta}||_{\infty}$$

Modeling LoRA's fine-tuning Procedure with NTK

Bridging Robustness and Model Structure via Information Geometry

Modeling the relationship of robustness between LoRA and full fine-tuning

Notations

$$y^{(l)}(x) = \frac{1}{n_l} W^{(l)} \cdot x^{(l)}$$

$$y_a^{(l)}(x) = \phi(x^{(l)})$$

$$x^{(0)} = x; x^{(l)} = y_a^{(l-1)}$$

Neural Tangent Kernel: Modeling the Learning Process

What is neural tangent kernel (NTK)?

Neural Tangent Kernel

$$X, X' \in \mathbb{R}^{N \times n_0}; \theta \in \mathbb{R}^P;$$

$$K_{\rm nth}^{(l)}(X,X';\theta):R^{N\times n_0}\times R^{N\times n_0}\times R^P\to R^{n_l\times N\times N}$$

$$K_{\text{ntk}}^{(l)}(X, X'; \theta) = \sum_{p=1}^{P} \partial_{\theta_p} y_a^{(l)}(X; \theta_p) \otimes \partial_{\theta_p} y_a^{(l)}(X'; \theta_p)$$

$$= \nabla_{\theta} y_a^{(l)}(X;\theta)^T \cdot \nabla_{\theta} y_a^{(l)}(X';\theta)$$

What does NTK express?

$$K_{\text{ntk}}^{(l)}(X, X'; \theta)_{m,n} = K_{\text{ntk}}^{(l)}(x_m, x_n; \theta)$$

= $\nabla_{\theta} y_a^{(l)}(x_m; \theta)^T \cdot \nabla_{\theta} y_a^{(l)}(x_n; \theta)$

 $R^{n_l \times P}$

Neural Tangent Kernel

What does NTK express?

The **similarity (correlation) of the gradient descent direction** caused by two variables for a given model state.

Arthur Jacot, Neural Tangent Kernel: Convergence and Generalization in Neural Networks. EPFL, NIPS'18

Neural Tangent Kernel

What does NTK express?

Property of NTK:

- It is **deterministic**. Only relevant to model architectures and the $\chi_n; \theta$ initialization variance of parameters.
- Keep constant during training

$$= \nabla_{\theta} y_a^{(l)}(x_m; \theta)_j^T \cdot \nabla_{\theta} y_a^{(l)}(x_n; \theta)_j$$

The **similarity (correlation) of the gradient descent direction** caused by two variables for a given model state.

Arthur Jacot, Neural Tangent Kernel: Convergence and Generalization in Neural Networks. EPFL, NIPS'18

STEP 0. Pre-requirements

Empirical Observation

When prompt-based fine-tuning is used, fine-tuning a pre-trained language model stays within the NTK regime.

$$M(f(x; \Theta), D, \widetilde{D}) = E_{(D, \widetilde{D})} E_t ||\Delta \Theta - \Delta \widetilde{\Theta}||_{\infty}$$

$$M_{\rm fft} - M_{\rm lora}$$
? 0

$$\sum_{x,\tilde{x}\sim D,\widetilde{D}} |x-\tilde{x}|_{\infty} < S$$

$$M(f(x;\Theta),D,\widetilde{D}) = E_{(x,\widetilde{x})\sim(D,\widetilde{D})}E_t||\Delta\Theta - \Delta\widetilde{\Theta}||_{\infty}$$

$$M' = E_{(x,\tilde{x}) \sim (D,\widetilde{D})} K_{ntk}(x,\tilde{x})$$

$$\sum_{x,\tilde{x}\sim D,\tilde{D}} |x-\tilde{x}|_{\infty} < S$$

$$M(f(x;\Theta),D,\widetilde{D}) = E_{(x,\widetilde{x})\sim(D,\widetilde{D})}E_t||\Delta\Theta - \Delta\widetilde{\Theta}||_{\infty}$$

$$M' = E_{(x,\widetilde{x}) \sim (D,\widetilde{D})} K_{ntk}(x,\widetilde{x})$$

Question: How to decouple datasets with model architecture?

$$M' = E_{(x,\widetilde{x}) \sim (D,\widetilde{D})} K_{ntk}(x,\widetilde{x})$$

Information Geometry

Zhao, C. et al. The adversarial attack and detection under the fisher information metric. AAAI'19 Naddeo,K et al. Information geometric perspective to adversarial attacks and defenses. IJCNN'22 Rahmati,A., et al. A geometric framework for black-box adversarial attacks. CVPR'20

$$M' = E_{(x,\widetilde{x}) \sim (D,\widetilde{D})} K_{ntk}(x,\widetilde{x})$$

Information Geometry

Architecture

Model's Robustness

$$I_{\theta} = E_{x \in D} \nabla_{\theta} L(x; \theta)^{T} K_{ntk}(x, x) \nabla_{\theta} L(x; \theta)$$

STEP I. Simplifying the Traini

ometry

Information Geometry

Architecture

/NTK formula

Model's Robustness

$$I_{\theta} = E_{x \in D} \nabla_{\theta} L(x; \theta)^{T} K_{ntk}(x, x) \nabla_{\theta} L(x; \theta)$$

Information Bits:
$$IB = \frac{1}{2} \log \det_{pseudo} I_{\theta} = \frac{1}{2} \sum_{\lambda > 0} \lambda$$

Renyi Entropy:
$$H_{\alpha} = \frac{1}{1 - \alpha} \log(\sum_{i=1}^{n_L} \lambda_i^{\alpha})$$

Theoretical Analysis

Modeling LoRA's fine-tuning Procedure with NTK

Bridging Robustness and Model Structure via Information Geometry

Modeling the relationship of robustness between LoRA and full fine-tuning

$$K_{LoRA}^{l} = K_{ff}^{l} + \Delta_{r}^{l}$$

$$\Delta_{r}^{l} = \left[\phi\left(y^{(l-1)}(x)\right)\right]^{T} \left(A^{l} T A^{l} - I\right) \left[\phi\left(y^{(l-1)}(x_{c})\right)\right]$$

$$M_{\Lambda}^{l} = A^{lT}A^{l} - I$$

$$K_{LoRA}^{l} = K_{ff}^{l} + \Delta_{r}^{l}$$

$$\Delta_{r}^{l} = \left[\phi\left(y^{(l-1)}(x)\right)\right]^{T} \left(A^{lT}A^{l} - I\right) \left[\phi\left(y^{(l-1)}(x_{c})\right)\right]$$

Theorem (M_{Δ}^{l} 'sNegative Semi-Definiteness).

When the LoRA submatrix $A^l \in R^{r \times n_{l-1}}$ is initialized with variance σ^2 , $\sigma^2 < \frac{1}{n_{l-1}}$, and $r \le n_{l-1}$ then M^l_Δ is a negative semi-definite matrix, with r eigenvalues equal to $\sigma^2 \cdot n_{l-1}$ and $n_{l-1} - r$ eigenvalues equal to 0.

$$\sigma^2 = \frac{1}{3} \frac{1}{n_{l-1}}$$
 in official implications.

$$K_{LoRA}^{l} = K_{ff}^{l} + \Delta_{r}^{l}$$

$$\Delta_{r}^{l} = \left[\phi\left(y^{(l-1)}(x)\right)\right]^{T} \left(A^{lT}A^{l} - I\right) \left[\phi\left(y^{(l-1)}(x_{c})\right)\right]$$

Theorem (M_{Δ}^{Γ} 's Negative Semi-Definiteness).

When the LoRA submatrix $A^l \in R^{r \times n_{l-1}}$ is initialized with variance σ^2 , $\sigma^2 < \frac{1}{n_{l-1}}$, and $r \le n_{l-1}$ then M^l_Δ is a negative semi-definite matrix, with r eigenvalues equal to $\sigma^2 \cdot n_{l-1}$ and $n_{l-1} - r$ eigenvalues equal to 0.

$$IB_{ff} \ge IB_{LoRA} \& H_{\alpha ff} \ge H_{\alpha LoRA}$$

$$K_{LoRA}^l = K_{ff}^l + \Delta_r^l$$

$$\Delta_r^l = \left[\phi\left(y^{(l-1)}(x)\right)\right]^T (A^{lT}A^l - I)[\phi\left(y^{(l-1)}(x_c)\right)]$$

Theorem (M_{Λ}^{l} 's Negative Semi-Definiteness).

When the LoRA submatrix $A^l \in R^{r \times n_{l-1}}$ is initialized with variance σ^2 , $\sigma^2 < \frac{1}{n_{l-1}}$, and $r \le n_{l-1}$ then M^l_Δ is a negative semi-definite matrix, with r eigenvalues equal to $\sigma^2 \cdot \underline{n_{l-1}}$ and $n_{l-1} - r$ eigenvalues equal to 0.

When
$$\sigma^2=\frac{1}{n_{l-1}}$$
, and $r=n_{l-1}$
$$K_{ff}=K_{LORA} \text{, i.e., } M_{\Delta}^l=0.$$

Theoretical Analysis

Modeling LoRA's fine-tuning Procedure with NTK

Bridging Robustness and Model Structure via Information Geometry

Modeling the relationship of robustness between LoRA and full fine-tuning

Theoretical Analysis

$$IB_{ff} \ge IB_{LoRA} \& H_{\alpha ff} \ge H_{\alpha LoRA}$$

LoRA Exhibits a Higher Training-time Robustness

$$IB_{ff} \ge IB_{LoRA}$$

Lower Information Bits: Smaller space to contain the backdoor

More robust against backdoor attacks

Untargeted Poisoning Attacks

Poison training samples to **reduce the performance** of trained models

$$H_{\alpha ff} \ge H_{\alpha LoRA}$$

Lower Renyi Entropy: Less learning ability to fit both the clean samples and the poisoned samples

More vulnerable against poisoning attacks

LoRA: Excelling in Backdoor Defense While Falling Short Against Untargeted Poisoning

LoRA: Excelling in Backdoor Defense While Falling Short Against Untargeted Poisoning

STEP IV. Factors that Influence LoRA's Training-time Robustness

Theorem (M_{Δ}^{l} 's Negative Semi-Definiteness).

When the LoRA submatrix $A^l \in R^{r \times n_{l-1}}$ is initialized with variance σ^2 , $\sigma^2 < \frac{1}{n_{l-1}}$, and $r \le n_{l-1}$ then M^l_Δ is a negative semi-definite matrix, with r eigenvalues equal to $\sigma^2 \cdot n_{l-1}$ and $n_{l-1} - r$ eigenvalues equal to 0.

$$M_r^l = A^{lT}A^l - I$$

- Initialization Variance
- Rank

STEP IV. Factors that Influence LoRA's Training-time Robustness

STEP IV. Factors that Influence LoRA's Training-time Robustness

No obvious correlation of initialization variance in untargeted poisoning attacks.

The realistic fine-tuning procedure of LoRA does not strictly follows the NTK regime.

Conclusion

A theoretical framework to analyze the training-time robustness of given model structures;

Theoretically and empirically compare the robustness of LoRA with full fine-tuning under training-time attacks;

Reveal the influence of initialization variance and the rank to LoRA's security.

Thanks for your attention!