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Downstream Adaptation of LLMs
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* We cannot replace the fine-tuning procedure with prompts
* LoRA is a dominant solution now for PEFT



LoRA is widely used in industrial scenarios and are usually as
the default setting of fine-tuning.
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Responsible Al principles inform all steps

“We use LoRA...We represent the values of the adapter parameters using 16 bits, and
for the ~3 billion parameter on-device model, the parameters for a rank 16 adapter
typically require 10s of megabytes.”

Apple Intelligence Foundation Language Models. Apple. Arxiv’'24.



Low Rank Adaptation
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Edward J. Hu. LoRA: Low-Rank Adaptation of Large Language Models. MSR, Arxiv'2021



Low Rank Adaptation
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Low Rank Adaptation
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Security Concerns of LORA

As a fine-tuning strategy, dose LoRA lead to lower
robustness against training-time attacks?
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LoRA in ML Privacy and Security

B LoRA as the tool of attacks

* Adversarial attacks: AdvLoRA: Adversarial Low-Rank Adaptation of Vision-
Language Models[ccs’24]

* Backdoor in LoRA: LoRA-as-an-Attack! Piercing LLM Safety Under The Share-
and-Play Scenario[2024.02 arxiv]

* Recover the pre-fine-tuning’s weights via LoRA: Recovering the Pre-Fine-
Tuning Weights of Generative Models [2024.07 arxiv]

* DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under
Differentially Private Federated Learning using Dynamic Low-Rank Adaptation

B LoRA arises fairness issue

* On Fairness of Low-Rank Adaptation of Large Models [2024.05 arxiv]



Targets

Is LoRA more vulnerable compared to FFT against
poisoning/backdoor attacks?

* an answer with theoretical analysis
 factors that influences LLM fine-tuning’s robustness



Training-time Attacks & Training-time Robustness
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Measuring the Training-time Robustness of
Two Architectures is Difficult

M(f(X; 6)'D’5) — E(D,ﬁ)Et”A@ o Aﬁ(;),“oo

Mfft o Mlora 70

Challenges:
* Dynamics of parameter updating during training.
* Improper metric design with L-inf norm.



Measuring the Training-time Robustness of
Two Architectures is Difficult
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Challenges:
* Dynamics of parameter updating during training.
* Improper metric design with L-inf norm.

Solution: A new analytical framework!



Theoretical Analysis

M(f (x; 0),D,D) = E (p5,E| |40 — AB |

Modeling LoRA’s fine-tuning Procedure with NTK

Bridging Robustness and Model Structure via Information Geometry

Modeling the relationship of robustness between
LoRA and full fine-tuning



Notations

Yo (%) = p(x®)

x©@ = x; x® = Y




Neural Tangent Kernel: Modeling the Learning Process

What is neural tangent kernel (NTK)?

Arthur Jacot, Neural Tangent Kernel: Convergence and Generalization in Neural Networks. EPFL, NIPS’18



Neural Tangent Kernel
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Arthur Jacot, Neural Tangent Kernel: Convergence and Generalization in Neural Networks. NIPS’18 Rnle



Neural Tangent Kernel

What does NTK express?
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The similarity (correlation) of the gradient descent direction
caused by two variables for a given model state.

Arthur Jacot, Neural Tangent Kernel: Convergence and Generalization in Neural Networks. EPFL, NIPS’18



Neural Tangent Kernel
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* Keep constant during training

The similarity (correlation) of the gradient descent direction
caused by two variables for a given model state.

Arthur Jacot, Neural Tangent Kernel: Convergence and Generalization in Neural Networks. EPFL, NIPS’18



STEP 0. Pre-requirements

Empirical Observation

When prompt-based fine-tuning is used, fine-tuning a pre-trained
language model stays within the NTK regime.

Malladi, S., Wettig. A kernel-based view of language model fine-tuning. ICML 23.



STEP |. Simplifying the Training-Time Robustness
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STEP |. Simplifying the Training-Time Robustness
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STEP |. Simplifying the Training-Time Robustness
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M(f (x;©),D,D) = E 5)~0,5)Et|1A0 — AB||
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M" = E . #)~,5)Kntx (X, X)

Question: How to decouple datasets with model architecture?



STEP I. Simplifying the Training-Time Robustness
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Zhao, C. et al. The adversarial attack and detection under the fisher information metric. AAAI’19
Naddeo,K et al. Information geometric perspective to adversarial attacks and defenses. IJCNN’22
Rahmati,A., et al. A geometric framework for black-box adversarial attacks. CVPR’20



STEP I. Simplifying the Training-Time Robustness
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STEP I. Simplifying the Trainir
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Theoretical Analysis

Modeling LoRA’s fine-tuning Procedure with NTK

Bridging Robustness and Model Structure via Information Geometry

Modeling the relationship of robustness between
LoRA and full fine-tuning



STEP II. NTK Relationship between LoRA and FF
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STEP Il. NTK Relationship between LoRA and FF
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Theorem (M f\_’sNegative Semi-Definiteness).
When the LoRA submatrix A' € R"*™-1 is initialized with variance 2,
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with r eigenvalues equal to 62 - n;_; and nj_; — r eigenvalues equal to 0.
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STEP Il. NTK Relationship between LoRA and FF
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STEP Il. NTK Relationship between LoRA and FF
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Kff — KLORAI i.e., Mi = 0.
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Theoretical Analysis

Modeling LoRA’s fine-tuning Procedure with NTK

Bridging Robustness and Model Structure via Information Geometry

Modeling the relationship of robustness between
LoRA and full fine-tuning

Theoretical Analysis



STEP Ill. Analysis: Double Edged Sword of LoRA’s
Training-time Robustness
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STEP Ill. Analysis: Double Edged Sword of LoRA’s
Training-time Robustness
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STEP Ill. Analysis: Double Edged Sword of LoRA’s
Training-time Robustness
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Lower Information Bits: Smaller space
to contain the backdoor
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More robust against backdoor attacks




STEP Ill. Analysis: Double Edged Sword of LoRA’s
Training-time Robustness
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Poison training samples to reduce
the performance of trained models




STEP Ill. Analysis: Double Edged Sword of LoRA’s
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Lower Renyi Entropy: Less learning
ability to fit both the clean samples
and the poisoned samples
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More vulnerable against poisoning attacks



STEP Ill. Analysis: Double Edged Sword of LoRA’s
Training-time Robustness

LoRA: Excelling in Backdoor Defense
While Falling Short Against Untargeted Poisoning



LoRA: Excelling in Backdoor Defense
While Falling Short Against Untargeted Poisoning
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STEP IV. Factors that Influence LoORA’s Training-time Robustness

Theorem (M IA’s Negative Semi-Definiteness).

When the LoRA submatrix A! € R"*™-1 js initialized with variance g2,
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STEP IV. Factors that Influence LoORA’s Training-time Robustness
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STEP IV. Factors that Influence LoORA’s Training-time Robustness

S5T-2 (Poisoning PR=0.3)

(]
W LRE S
Em
§s
NP QNS NS O
QQ?,":'Q@@N ~ 1

Initialization Variance

No obvious correlation of initialization variance in untargeted poisoning attacks.
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The realistic fine-tuning procedure of LoRA does not strictly follows the NTK regime.



Conclusion

A theoretical framework to analyze the training-time robustness
of given model structures;

Theoretically and empirically compare the robustness of LoRA
with full fine-tuning under training-time attacks;

Reveal the influence of initialization variance and the rank
to LoRA’s security.






