Benefits of Early Stopping in GD for Overparameterized Logistic Regression

Jingfeng Wu Joint work with Peter Bartlett, Matus Telgarsky, and Bin Yu

Logistic regression

$$y_i \in \{\pm 1\}, x_i \in \mathbb{R}^d, i \le n$$

$$\mathscr{E}(t) := \ln(1 + e^{-t})$$

$$\widehat{L}(w) := \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(y_i x_i^{\mathsf{T}} w)$$

Logistic regression

$$y_i \in \{\pm 1\}, x_i \in \mathbb{R}^d, i \le n \text{ high dis}$$

$$\mathcal{E}(t) := \ln(1 + e^{-t})$$

$$\widehat{L}(w) := \frac{1}{n} \sum_{i=1}^{n} \ell(y_i x_i^{\mathsf{T}} w)$$

high dim

linear separability

d > n

"uniform converger

Logistic regression

$$y_i \in \{\pm 1\}, x_i \in \mathbb{R}^d, i \le n \text{ high dim } d > n$$

$$\mathcal{E}(t) := \ln(1 + e^{-t})$$

$$\widehat{L}(w) := \frac{1}{n} \sum_{i=1}^{n} \ell(y_i x_i^{\mathsf{T}} w)$$

"uniform convergen

Gradient descent: $w_{t+1} = w_t - \eta \nabla \widehat{L}(w_t)$ $w_0 = 0$

Asymptotic implicit bias

$$\tilde{w} := \underset{\|w\|=1}{\operatorname{arg max min}} y_i x_i^{\mathsf{T}} w < \underset{\text{direction}}{\operatorname{max-margin}}$$

[Soudry et al, 2018; Ji & Telgarsky, 2018; ...]

If
$$\eta = \Theta(1)$$
, then as $t \to \infty$,

$$\|w_t\| \to \infty$$

$$\frac{w_t}{\|w_t\|} \to \tilde{w}$$

Is max-margin the full story?

Missing aspects

- Divergent norm (bad for metrics other than zero-one)
- Max-margin feels unstable

Missing aspects

- Divergent norm (bad for metrics other than zero-one)
- Max-margin feels unstable
- Requiring exp time

$$\frac{w_t}{\|w_t\|} = \tilde{w} + O\left(\frac{\ln \ln(t)}{\ln(t)}\right)$$

$$||w_t|| = \Theta(\ln t)$$

Metrics

Logistic
$$L(w) := \mathbb{E}\ell(yx^{\mathsf{T}}w) \qquad \ell(t) := \ln(1 + e^{-t})$$

Zero-one $Z(w) := \Pr(yx^{\mathsf{T}}w \le 0)$

Calibration $C(w) := \mathbb{E}|s(x^{\mathsf{T}}w) - \Pr(y = 1|x)|^2$

$$s(t) := \frac{1}{1 + \exp(-t)}$$

Metrics

Logistic
$$L(w) := \mathbb{E}\ell(yx^{\mathsf{T}}w)$$
 $\ell(t) := \ln(1 + e^{-t})$

Zero-one
$$Z(w) := \Pr(yx^{\mathsf{T}}w \le 0)$$

Calibration
$$C(w) := \mathbb{E} |s(x^T w) - \Pr(y = 1 | x)|^2$$

$$s(t) := \frac{1}{1 + \exp(-t)}$$

Consistency (logistic or zero-one)

$$L(w_n) \to \min L$$
 or $Z(w_n) \to \min Z$

Calibration
$$C(w_n) \to 0$$

sigmoid

$$x \sim \mathcal{N}(0, \Sigma)$$
 $\Pr(y = 1 \mid x) = s(x^{\mathsf{T}}w^*)$

for $\operatorname{tr}(\Sigma) \lesssim 1$ and $\|w^*\|_{\Sigma} \lesssim 1$ "not grow with n"

Data model $\text{allow } \text{rank}(\Sigma) = \infty$

sigmoid

$$x \sim \mathcal{N}(0, \Sigma)$$

$$x \sim \mathcal{N}(0, \Sigma)$$
 $\Pr(y = 1 \mid x) = s(x^{\mathsf{T}}w^*)$

for $\operatorname{tr}(\Sigma) \lesssim 1$ and $\|w^*\|_{\Sigma} \lesssim 1$ "not grow with n"

allow $||w^*|| = \infty$ | "benign overfitting setup"

 $\alpha llow rank(\Sigma) = \infty$

sigmoid

$$x \sim \mathcal{N}(0, \Sigma)$$

$$x \sim \mathcal{N}(0, \Sigma)$$
 $\Pr(y = 1 \mid x) = s(x^{\mathsf{T}}w^*)$

for $\operatorname{tr}(\Sigma) \lesssim 1$ and $\|w^*\|_{\Sigma} \lesssim 1$ "not grow with n"

allow $||w^*|| = \infty$ "benign overfitting setup"

A. w^* minimizes L, Z, and C

B.
$$Z(w) - \min Z \le 2\sqrt{C(w)} \le \sqrt{2}\sqrt{L(w) - \min L}$$

C. min $L \gtrsim 1$ and min $Z \gtrsim 1$

 $\boxed{\text{allow rank}(\Sigma) = \infty}$

sigmoid

$$x \sim \mathcal{N}(0, \Sigma)$$

$$x \sim \mathcal{N}(0, \Sigma)$$
 $\Pr(y = 1 \mid x) = s(x^{\mathsf{T}}w^*)$

for $\operatorname{tr}(\Sigma) \lesssim 1$ and $\|w^*\|_{\Sigma} \lesssim 1$ "not grow with n"

allow $||w^*|| = \infty$

"benign overfitting setup"

A. w^* minimizes L, Z, and C

B.
$$Z(w) - \min Z \le 2\sqrt{C(w)} \le \sqrt{2}\sqrt{L(w) - \min L}$$

C. min $L \gtrsim 1$ and min $Z \gtrsim 1$

logistic consistent => calibration => zero-one consistent

allow rank(Σ) = ∞

sigmoid

$$x \sim \mathcal{N}(0, \Sigma)$$

$$x \sim \mathcal{N}(0, \Sigma)$$
 $\Pr(y = 1 \mid x) = s(x^{\mathsf{T}}w^*)$

for $\operatorname{tr}(\Sigma) \lesssim 1$ and $\|w^*\|_{\Sigma} \lesssim 1$ "not grow with n"

allow $||w^*|| = \infty$

"benign overfitting setup"

A. w^* minimizes L, Z, and C

B.
$$Z(w) - \min Z \le 2\sqrt{C(w)} \le \sqrt{2}\sqrt{L(w) - \min L}$$

C. min $L \gtrsim 1$ and min $Z \gtrsim 1$

 $\Theta(1)$ noise => overfitting

logistic consistent => calibration => zero-one consistent

Let $\eta \lesssim 1$ so GD is stable. Pick stopping time t

$$\widehat{L}(w_t) \leq \widehat{L}(w_{0:k}^*) \leq \widehat{L}(w_{t-1})$$

Then w.h.p.

$$L(w_t) - \min L \lesssim \tilde{O}(1) \sqrt{\frac{\|w_{0:k}^*\|^2}{n}} + \|w_{k:\infty}^*\|_{\Sigma}^2$$

Let $\eta \lesssim 1$ so GD is stable. Pick stopping time t

$$\widehat{L}(w_t) \leq \widehat{L}(w_{0:k}^*) \leq \widehat{L}(w_{t-1})$$

Then w.h.p.

"best" rank-k projection

$$L(w_t) - \min L \lesssim \tilde{O}(1) \sqrt{\frac{\|w_{0:k}^*\|^2}{n}} + \|w_{k:\infty}^*\|_{\Sigma}^2$$

Let $\eta \lesssim 1$ so GD is stable. Pick stopping time t

$$\widehat{L}(w_t) \leq \widehat{L}(w_{0:k}^*) \leq \widehat{L}(w_{t-1})$$

Then w.h.p.

"best" rank-k projection

$$L(w_t) - \min L \lesssim \tilde{O}(1) \sqrt{\frac{\|w_{0:k}^*\|^2}{n}} + \|w_{k:\infty}^*\|_{\Sigma}^2$$

o(1) for $k_n \uparrow$

o(1) since $k_n \uparrow$ and $||w^*||_{\Sigma} \lesssim 1$

Let $\eta \lesssim 1$ so GD is stable. Pick stopping time t

$$\widehat{L}(w_t) \leq \widehat{L}(w_{0:k}^*) \leq \widehat{L}(w_{t-1})$$

Then w.h.p.

"best" rank-k projection

$$L(w_t) - \min L \lesssim \tilde{O}(1) \sqrt{\frac{\|w_{0:k}^*\|^2}{n}} + \|w_{k:\infty}^*\|_{\Sigma}^2$$

o(1) for some t_n^* as long as

"not grow with *n*"

$$o(1)$$
 for $k_n \uparrow$

$$o(1)$$
 since $k_n \uparrow$ and $||w^*||_{\Sigma} \lesssim 1$

Let $\eta \lesssim 1$ so GD is stable. Pick stopping time t

$$\widehat{L}(w_t) \leq \widehat{L}(w_{0:k}^*) \leq \widehat{L}(w_{t-1})$$

Then w.h.p.
$$\left[t(w^*, \Sigma, k_n)\right]$$

"best" rank-k projection

$$L(w_t) - \min L \lesssim \tilde{O}(1) \sqrt{\frac{\|w_{0:k}^*\|^2}{n}} + \|w_{k:\infty}^*\|_{\Sigma}^2$$

o(1) for some t_n^* as long as

"not grow with *n*"

$$o(1)$$
 for $k_n \uparrow$

o(1) since $k_n \uparrow$ and $||w^*||_{\Sigma} \lesssim 1$

implies calibration & zero-one

Let $\eta \lesssim 1$ so GD is stable. Pick stopping time t

$$\widehat{L}(w_t) \leq \widehat{L}(w_{0:k}^*) \leq \widehat{L}(w_{t-1})$$

Then w.h.p.
$$\left[t(w^*, \Sigma, k_n)\right]$$

"best" rank-k projection

$$L(w_t) - \min L \lesssim \tilde{O}(1) \sqrt{\frac{\|w_{0:k}^*\|^2}{n}} + \|w_{k:\infty}^*\|_{\Sigma}^2$$

o(1) for some t_n^* as long as

"not grow with *n*"

$$o(1)$$
 for $k_n \uparrow$

o(1) since $k_n \uparrow$ and $||w^*||_{\Sigma} \lesssim 1$

Examples

• Finite norm: $||w^*|| \lesssim 1$

$$L(w_t) - \min L \le \tilde{O}(n^{-1/2})$$

• Power laws: $\lambda_i=i^{-a}$, $\lambda_i(w_i^*)^2=i^{-b}$, a,b>1

$$L(w_t) - \min L \le \begin{cases} \tilde{O}(n^{-1/2}) & b > a + 1\\ \tilde{O}(n^{\frac{1-b}{a+b-1}}) & b \le a + 1 \end{cases}$$

$$\|w^*\| = \infty$$

Examples

• Finite norm: $||w^*|| \lesssim 1$

$$L(w_t) - \min L \le \tilde{O}(n^{-1/2})$$

• Power laws: $\lambda_i=i^{-a}$, $\lambda_i(w_i^*)^2=i^{-b}$, a,b>1

$$L(w_t) - \min L \le \begin{cases} \tilde{O}(n^{-1/2}) & b > a + 1\\ \tilde{O}(n^{\frac{1-b}{a+b-1}}) & b \le a + 1 \end{cases}$$

rates improvable

$$||w^*|| = \infty$$

Issue of divergent norm

metrics sensitive to estimator norm

but
$$||w_{\infty}|| = \infty$$
 inherent in "ERM"

Issue of interpolation

Assume that $\|w^*\|_{\Sigma} \approx 1$ and $\Sigma^{1/2}w^*$ is k-sparse. If

$$n \gtrsim k \ln k$$
, rank(Σ) $\approx n \ln n$

then for every interpolator \hat{w} , w.h.p.

$$\frac{\min_{i} y_{i} x_{i}^{\mathsf{T}} \hat{w} > 0}{Z(\hat{w}) - \min Z} \gtrsim \frac{1}{\sqrt{\ln n}}$$

Issue of interpolation

Assume that $||w^*||_{\Sigma} = 1$ and $\Sigma^{1/2}w^*$ is k-sparse. If

$$n \gtrsim k \ln k$$
, rank(Σ) $\approx n \ln n$

then for every interpolator \hat{w} , w.h.p.

$$\frac{\min_{i} y_{i} x_{i}^{\mathsf{T}} \hat{w} > 0}{Z(\hat{w}) - \min Z} \gtrsim \frac{1}{\sqrt{\ln n}}$$

$$Z(w_t) - \min Z \lesssim \operatorname{sqrt}\left(\frac{\|w_{0:k}^*\|}{\sqrt{n}} + \|w_{k:\infty}^*\|_{\Sigma}^2\right) = \operatorname{poly}\left(\frac{1}{n}\right)$$

for "simple" problems $||w^*|| = \Theta(1)$ or power laws

Benefits of early stopping

	early-stopped	asymptotic
logistic consistency	always yes	always no
calibration	always yes	always no
zero-one risk	"poly"	"polylog"

GD passes through *w**

but eventually diverges from it

Benefits of early stopping

	early-stopped	asymptotic
logistic consistency	always yes	always no
calibration	always yes	always no
zero-one risk	"poly"	"polylog"

GD passes through *w**

but eventually diverges from it

More in paper: early stopping vs. ℓ_2 -regularization