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Gradient descent: w,, | = w, — nVi(wt) wy = 0



Asymptotic implicit bias
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[Soudry et al, 2018; Ji & Telgarsky, 2018; ...]

Ifn =0(1), thenast — oo,

[w,|| = oo
Wi
Wt _ ® A
> W O
|w,| @

Is max-margin the full story?
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- Divergent norm (bad for metrics other than zero-one)
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Metrics
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Consistency (logistic or zero-one)
L(w,) - minL or Z(w, — minZ

Calibration  C(w,) = 0



Data model [sigmoid
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Logistic risk bound

Let 7 S 1 so GD is stable. Pick stopping time ¢
L(w) < L(wg,) < L(w,_;)
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implies calibration

Logistic risk bound g zer0-0ne
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Examples
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rates improvable



[ssue of divergent norm

We have (inconsistencyj (poor calibration)

Lw,)=00, Cwy) =1

r applies to GD when \
for all (W), such that overparameterized
, : t v
lim HWtH = 00, lim exists
[[wi

metrics sensitive to estimator norm
but |[w_ || = o0
inherent in “ERM”




[ssue of interpolation

Assume that ||[w*||x = 1 and > V2w* is k-sparse. If
n2>klnk, rank(2) =nlnn

then for every interpolator w, w.h.p.
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for “simple” problems  |lw*|| = ®(1) or power laws




Benetits of early stopping

early-stopped asymptotic
logistic consistency| always yes always no
calibration always yes always no
zero-one risk “poly” “polylog”

GD passes
through w*

but eventually
diverges from it
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More in paper: early stopping vs. £,-regularization



