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Graph Grammar is a formal framework for describing graphs as a sequence of rewrite rules.Existing sequential graph generation methods lack a principled mapping between graph and sequence. Results show DIGGED’s superiority on downstream generation, prediction and optimization tasks.
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across connected components of H , resulting in a list of
occurrences D1, D2, . . . , DK , for each common motif D.

3.2.2. COMPATIBILITY MAXIMIZATION SOLVER

The second step is to, for each motif, find the maximal sub-
set of occurrences that can be consistent with the same set of
connection instructions. In Figure 1, we see each occurrence
of the candidate motif includes an incoming edge to node
1 from a red neighbor, so instruction (c) states: “establish
an in-edge to node 1 from each in-neighbor with label red”.
From the second DAG, it appears the same instruction but
for node 2 is needed. However, adding such an instruction
would create a conflict with the motif’s occurrences in DAGs
H2 and H3, as the red neighbor doesn’t connect to node 2
in those instances. Instead, our compatibility solver finds
a different set of instructions (two instructions with group
label (d)) for which all three occurrences are compatible.
Formally, the solver finds the optimal assignment to the vari-
ables

S
K

k=1{(dy,�y) | 9x 2 Dk s.t. x neighbors y} where
dy 2 {in, out},�y 2 T , representing the direction and edge
labels (if any) of the gray edges. The solver is formulated as
a maximum-clique problem, where each node represents a
possible assignment to {(dy,�y)} for a specific occurrence
k, and an edge is created between two nodes if the variable
assignments they contain are not in conflict with each other.
At a high level, each node v carries with it an “inset” and
“outset”, representing the set of instructions that must be
present and the set of instructions that must not be present,
as deduced from the redirection assignments. Determining
whether a node exists equates to checking vinset \ voutset = ;
and whether an edge exists for u and v equates to checking
(uinset [ vinset)\ (uoutset [ voutset) = ; (with some additional
minor considerations). After obtaining the clique solution
C := {v}, an or-reduction

S
v2C

vinset yields the minimal
instruction set to include in a rule compatible with all oc-
currences, and similarly

S
v2C

voutset yields the minimal
instruction set to exclude. Any instruction set in-between
is permissible, and we apply dataset-specific heuristics in
selecting the final instruction set for inducing a rule.

3.2.3. MINIMUM DESCRIPTION LENGTH

The third step follows after the previous step is repeated
over all candidate motifs. We select the solution and its
accompanying maximally compatible rule, based on the
greedy objective: max |C|(|D|� 1). The contraction is the
reverse operation of a rule application: for each k, remove
Dk, replace it by a non-terminal node nk, and add edges
according to the solution’s assignment for {(dy,�y)}. This
step is motivated by prior work that uses MDL as the princi-
ple behind unsupervised objectives for graph compression.
Assuming the rule has size O(1), the greedy objective is
the difference in description length (�|H|). The algorithm
terminates when |C| < 2 over all clique solutions.

3.2.4. DISAMBIGUATION PROCEDURE

The final step of grammar induction is to resolve ambigu-
ity in G over D by modifying G ! G0. Preventing this
in general is impossible because determining whether a
given graph grammar G is ambiguous is undecidable (see
App. C). Nevertheless, we can find all derivations for a
given graph Hi 2 D. This problem, in general, is NP-hard
(Engelfriet & Rozenberg, 1997). We present a dynamic
parsing programming algorithm that is the DAG counterpart
to the well-known CYK algorithm (Cocke, 1969; Younger,
1967; Kasami, 1966) and takes advantage of two proper-
ties specific to DAGs and our grammar. The first exploits
the theoretical insight that DAGs have canonical string rep-
resentations (more in App. D), enabling hashing-based
memoization. The second prunes intermediate graphs that
become disconnected or cyclic, as those are not valid in-
termediate results (Deterministic property). After finding
all derivations, we find the minimal set of rules that, when
removed from G, leaves the largest subset of D with one
unique derivation over G0. The formulation is in terms of
the maximum hitting set problem. The algorithmic details
are in App. C.

3.3. Properties

We elaborate on how DIGGED addresses the limitations of
existing methods (Table 1). We will analyze two broad cate-
gories of methods: autoregressive generation (AG), which
builds up a graph incrementally, tracking the intermediate
graph to decide the next action, and sequential decoding
(SD), which directly generate descriptors that encode the
adjacency information of the graph using some permutation
of the nodes.

Table 1. DIGGED offers comprehensive guarantees that existing
methods fail to or partially address.
Methods One-to-one? Onto? Deterministic? Valid? Stateless?

AG 7 3 7 3 7
SD 7 3 3 7 3
DIGGED 3 3 3 3 3

1. One-to-one (over D). For every H 2 D, our unambigu-
ous procedure assures there is only one way to parse it.
AG methods can generate the same graph in many (up
to exponential) ways. SD methods rely on an arbitrary
ordering of the nodes.

2. Onto (over D). The proof in the appendix shows that
the grammar induction algorithm is a concurrent parsing
algorithm for each H 2 D, so D ✓ L(G). Both AG and
SD can generate any graph.

3. Deterministic. That reconstruction is deterministic fol-
lows immediately from properties of the grammar. We
also show additional desiderata, namely that each inter-
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Autoregressive (AG) methods generate node-by-node. Figure from Zhang et al (2019).

input

max3

conv5

?

conv3

1

Predict new 
node type

input

max3

conv5

conv5

conv3

2

If not ending 
type, continue 

generation

Predict edge 
from the last 

node

conv3

input

max3

conv5

conv5

3

?

If a new edge is 
added, update 

node hidden state

conv5

conv3

input

max3

conv5

4

conv5

conv5

A

U

conv5

……

Start generating 
the next node

Predict remaining 
edges in the same 

manner

conv5

conv3

input

max3

conv5

7

?

conv3

input

conv5

max3

conv5

5

?
?
?

conv3

input

max3

conv5

6

conv5

Finish 
generating the 
current node

Figure 3: An illustration of the steps for generating a new node.

The above aggregation and update functions can be used to encode general computation graphs. For
neural architectures, depending on how the outputs of multiple previous layers are aggregated as
the input to a next layer, we will make a modification to (4), which is discussed in Appendix E. For
Bayesian networks, we also make some modifications to their encoding due to the special d-separation
properties of Bayesian networks, which is discussed in Appendix F.

3.2 Decoding

We now describe how D-VAE decodes latent vectors to DAGs (the generative part). The D-VAE decoder
uses the same asynchronous message passing scheme as in the encoder to learn intermediate node
and graph states. Similar to (5), the decoder uses another GRU, denoted by GRUd, to update node
hidden states during the generation. Given the latent vector z to decode, we first use an MLP to map
z to h0 as the initial hidden state to be fed to GRUd. Then, the decoder constructs a DAG node by
node. For the i

th generated node vi, the following steps are performed:

1. Compute vi’s type distribution using an MLP fadd_vertex (followed by a softmax) based on the
current graph state hG := hvi�1 .

2. Sample vi’s type. If the sampled type is the ending type, stop the decoding, connect all loose ends
(nodes without successors) to vi, and output the DAG; otherwise, continue the generation.

3. Update vi’s hidden state by hvi = GRUd(xvi ,h
in
vi), where hin

vi = h0 if i = 1; otherwise, hin
vi is

the aggregated message from its predecessors’ hidden states given by equation (4).
4. For j= i�1, i�2, . . . , 1: (a) compute the edge probability of (vj , vi) using an MLP fadd_edge based

on hvj and hvi ; (b) sample the edge; and (c) if a new edge is added, update hvi using step 3.

The above steps are iteratively applied to each new generated node, until step 2 samples the ending
type. For every new node, we first predict its node type based on the current graph state, and then
sequentially predict whether each existing node has a directed edge to it based on the existing and
current nodes’ hidden states. Figure 3 illustrates this process. Since edges always point to new
nodes, the generated graph is guaranteed to be acyclic. Note that we maintain hidden states for both
the current node and existing nodes, and keep updating them during the generation. For example,
whenever step 4 samples a new edge between vj and vi, we will update hvi to reflect the change of
its predecessors and thus the change of the computation so far. Then, we will use the new hvi for the
next prediction. Such a dynamic updating scheme is flexible, computation-aware, and always uses
the up-to-date state of each node to predict next steps. In contrast, methods based on RNNs [3, 13] do
not maintain states for old nodes, and only use the current RNN state to predict the next step.

In step 4, when sequentially predicting incoming edges from previous nodes, we choose the reversed
order i � 1, . . . , 1 instead of 1, . . . , i � 1 or any other order. This is based on the prior knowledge
that a new node vi is more likely to firstly connect from the node vi�1 immediately before it. For
example, in neural architecture design, when adding a new layer, we often first connect it from the
last added layer, and then decide whether there should be skip connections from other previous layers.
Note that however, such an order is not fixed and can be flexible according to specific applications.

3.3 Training

During the training phase, we use teacher forcing [17] to measure the reconstruction loss: following
the topological order with which the input DAG’s nodes are consumed, we sum the negative log-
likelihood of each decoding step by forcing them to generate the ground truth node type or edge at
each step. This ensures that the model makes predictions based on the correct histories. Then, we
optimize the VAE loss (the negative of (1)) using mini-batch gradient descent following [17]. Note
that teacher forcing is only used in training. During generation, we sample a node type or edge at
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Sequential Decoding (SD) methods generate an equivalent sequential description of a graph.

Sequential description: [0] + [2,0] + [1,0,1] + [2,0,1,1] + [4,1,0,0,0] + [3,0,0,0,0,0]. 
Format: Concat [node type, *skip connections] over all nodes. 
Node types: [conv3, sep3, conv5, sep5, avg3].

input
conv3

avg3

conv5
sep3

conv5
sep5 output

One-to-one (dataset D): 
DIGGED’s disambiguation procedure assures there is exactly one parse per graph in the dataset. 
AG methods can generate in (up to exponential) ways.
SD methods rely on an arbitrary ordering of the nodes.
Onto (dataset D): 
DIGGED’s grammar induction is also a parsing algorithm, so every graph in the dataset has a parse. 
AG and SD can always generate the dataset.
Deterministic: 
DIGGED’s grammar is deterministic. 
SD enforces teacher-forcing. 
AG methods can take many action trajectories to arrive at the same final state.
Valid: 
DIGGED uses context-free grammar (CFG) , so an arbitrary derivation still produces a valid graph. 
AG can ensure only actions that retain validity are taken. 
SD methods do not guarantee an arbitrary description encodes a valid graph.
Stateless: 
CFGs are stateless. Generation terminates when a terminal rule is selected. 
SD is an equivalent encoding.
AG methods require tracking the intermediate graph as a state to filter out invalid actions.
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5. Results

Table 2. Prior validity, uniqueness and novelty (%). We follow the
same settings as Zhang et al. (2019).
Methods Neural architectures Bayesian networks

Accuracy Validity Uniqueness Novelty Accuracy Validity Uniqueness Novelty

D-VAE 99.96 100.00 37.26 100.00 99.94 98.84 38.98 98.01
S-VAE 99.98 100.00 37.03 99.99 99.99 100.00 35.51 99.70
GraphRNN 99.85 99.84 29.77 100.00 96.71 100.00 27.30 98.57
GCN 98.70 99.53 34.00 100.00 99.81 99.02 32.84 99.40
DeepGMG 94.98 98.66 46.37 99.93 47.74 98.86 57.27 98.49

DIGGED (GNN) 100 100 98.7 99.9 100 100 97.6 100
DIGGED (TOKEN) 100 100 25.4 37.8 100 100 98.67 26.67

Table 3. Effectiveness in real-world electronic circuit design.
Training data is CktBench101 (Dong et al., 2023) for all baselines
except top group. CktGNN also has an option to use CktBench301
as pivots in the BO. We also include top 90/95/max designs from
CktBench101 and CktBench301.

Methods Valid DAGs (%) " Valid circuits (%) " Novel circuits (%) " BO (FoM) "
PACE 83.12 75.52 97.14 33.2742
DAGNN 83.10 74.21 97.19 33.2742
D-VAE 82.12 73.93 97.15 32.3778

GCN 81.02 72.03 97.01 31.6244
GIN 80.92 73.17 96.88 31.6244
NGNN 82.17 73.22 95.29 32.2827
Graphormer 82.81 72.70 94.80 32.2827

CktGNN 98.92 98.92 92.29 33.4364
CktGNN (CktBench301) — — — 190.2354

CktBench101 (90%, 95%, max) 100 100 0
186.3870
233.1829
326.6657

CktBench301 (90%, 95%, max) 100 100 100
90.8379

119.9001
197.2296

DIGGED (GNN) 100 100 78.80 310.2635
DIGGED (TOKEN) 92.2 92.2 60.7 —

5.1. Unconditional Generation

ENAS & BN. Shown in Table 2, DIGGED ensures Validity
and achieves near 100% Uniqueness on ENAS and BN,
> 50% and > 40% higher than the second best method. On
BNs, it’s the only method achieving 100% Novelty, showing
ability to sample diverse, combinatorial structures.

CKT. Shown in Table 3, DIGGED ensures 100% Validity
both at the syntax (DAG) and semantic (circuit) level, serv-
ing as a powerful complement to synthetic data generation
pipelines.

5.2. Predictive Performance

CKT. As shown in Table 4, DIGGED produces discrimina-
tive latent representations when combining a dedicated DAG
encoder with sequence-based decoding with Transformers.
It achieves 26.5% lower RMSE and 60% higher Pearson r
on the holistic metric, FoM, over the next best (CktGNN),
which is a domain-specific GNN that uses hand-selected
motifs to form a subgraph basis.

ENAS. As shown in Table 5, DIGGED slightly underper-
forms the best generative model encoder (DAGNN). We
suspect that this is due to the large number of rules (7504)
in grammar, making dictionary learning cumbersome.

BN. We observe an interesting case of high Pearson r but
a more modest RMSE. We conduct a closer, visual, and
quantitative investigation of this result in App. F, showing
a global, linear trend. We believe this to be a consequence
of our sequence learning framework, where there is rep-
resentation continuity in the latent space. This showcases
the downstream representation learning advantages of train-
ing a modern Transformer architecture on a principled and
congruous sequence representation.

5.3. Bayesian Optimization

(a) ENAS (WS-Acc:
74.8, 74.9)

(b) BN (Ground-truth) (c) CKT (FoM:
306.32)

Figure 3. We visualize the best discovered designs from BO. We
reproduce the same BO and evaluation setup as Zhang et al. (2019);
Pham et al. (2018); Dong et al. (2023).

In Figure 3, we visualize the best, novel designs found
during BO.

CKT. DIGGED generated novel designs that exceeded the
best design in CktBench301, with the best one only 5%
lower in FoM than the best design in CktBench101. Visu-
alized in Fig. 3, we see a simple but effective double-stage
amplifier, with a parallel resistor configuration, with a FoM
of 306.32. We visualize additional designs in App. E, and
observe that they all have short derivation lengths, implicitly
capturing simplicity, an essential requirement for real-world
circuit design. More details on baselines are in App. E.3.

ENAS. In Fig. 3, we see a novel architecture that combines
the overall topology of the best designs found by Zhang
et al. (2019) with the consecutive avg. pooling layer design
found by Bowman et al. (2015). We also recover one of the
best (top 1%) designs in the dataset, with a weight-sharing
accuracy of 74.9. This shows the model is versatile, able to
reconstruct existing designs and combine aspects of designs
found by different previous models.

BN. In Fig. 3, we were able to recover all the dependen-
cies in the ground-truth model ((Lauritzen & Spiegelhalter,
1988)). This is impressive considering that DIGGED dis-
covered it on the 5th round of BO.
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Table 4. Predictive Performance of Latent Representations on CktBench101. We follow the same settings as Dong et al. (2023).

Evaluation Metric Gain BW PM FoM

RMSE # Pearson’s r " RMSE # Pearson’s r " RMSE # Pearson’s r " RMSE # Pearson’s r "
PACE 0.644 ± 0.003 0.762 ± 0.002 0.896 ± 0.003 0.442 ± 0.001 0.970 ± 0.003 0.226 ± 0.001 0.889 ± 0.003 0.423 ± 0.001
DAGNN 0.695 ± 0.002 0.707 ± 0.001 0.881 ± 0.002 0.453 ± 0.001 0.969 ± 0.003 0.231 ± 0.002 0.877 ± 0.003 0.442 ± 0.001
D-VAE 0.681 ± 0.003 0.739 ± 0.001 0.914 ± 0.002 0.394 ± 0.001 0.956 ± 0.003 0.301 ± 0.002 0.897 ± 0.003 0.374 ± 0.001

GCN 0.976 ± 0.003 0.140 ± 0.002 0.970 ± 0.003 0.236 ± 0.001 0.993 ± 0.002 0.171 ± 0.001 0.974 ± 0.003 0.217 ± 0.001
GIN 0.890 ± 0.003 0.352 ± 0.001 0.926 ± 0.003 0.251 ± 0.001 0.985 ± 0.004 0.187 ± 0.002 0.910 ± 0.003 0.284 ± 0.001
NGNN 0.882 ± 0.004 0.433 ± 0.001 0.933 ± 0.003 0.247 ± 0.001 0.984 ± 0.004 0.196 ± 0.002 0.926 ± 0.002 0.267 ± 0.001
Pathformer 0.816 ± 0.003 0.529 ± 0.001 0.895 ± 0.003 0.410 ± 0.001 0.967 ± 0.002 0.297 ± 0.001 0.887 ± 0.002 0.391 ± 0.001

CktGNN 0.607 ± 0.003 0.791 ± 0.001 0.873 ± 0.003 0.479 ± 0.001 0.973 ± 0.002 0.217 ± 0.001 0.854 ± 0.003 0.491 ± 0.002
DIGGED (GNN) 0.630 ± 0.005 0.771 ± 0.004 0.635 ± 0.006 0.784 ± 0.001 0.990 ± 0.001 0.314 ± 0.001 0.627 ± 0.002 0.787 ± 0.001
DIGGED (TOKEN) — — — — — — 1.005 ± 0.0002 0.199 ± 0.001

Table 5. Predictive performance of latent representation on ENAS
& BN test set. We follow same settings as Zhang et al. (2019).

Model ENAS BN

RMSE # Pearson’s r " RMSE # Pearson’s r "
S-VAE 0.644 ± 0.003 0.762 ± 0.002 0.896 ± 0.003 0.442 ± 0.001
GraphRNN 0.695 ± 0.002 0.707 ± 0.001 0.881 ± 0.002 0.453 ± 0.001
GCN 0.681 ± 0.003 0.739 ± 0.001 0.914 ± 0.002 0.394 ± 0.001

DeepGMG 0.976 ± 0.003 0.140 ± 0.002 0.970 ± 0.003 0.236 ± 0.001
D-VAE 0.890 ± 0.003 0.352 ± 0.001 0.926 ± 0.003 0.251 ± 0.001
DAGNN 0.882 ± 0.004 0.433 ± 0.001 0.933 ± 0.003 0.247 ± 0.001
DIGGED (GNN) 0.912 ± 0.001 0.386 ± 0.001 0.953 ± 0.052 0.712 ± 0.013
DIGGED (TOKEN) 0.987 ± 0.001 0.049 ± 0.006 0.989 ± 0.0001 0.129 ± 0.002

6. Discussion
6.1. Ablation Study on Simpler Sequential Descriptions.

We perform a controlled ablation in Table 6 fixing DAGNN
as the encoder and the same Transformer decoder architec-
ture used to train DIGGED. We vary various node-order
encodings as the output targets to test whether simpler SD
encodings suffice. We target three node-orderings – default
order (that is, the order provided by the data, normally a
topological order with domain-specific criteria), BFS from
a randomly chosen seed node (as in You et al. (2018b)),
or a random order – for comparison. We see the default
order is unique in most cases, but its unguaranteed validity
results in lower BO optimization results (following Zhang
et al. (2019) to deal with invalid samples). BFS or random
ordering destroys the decoder’s ability to generate valid
examples. BFS is do-able for mostly linear path graphs
in ENAS but is entirely infeasible for BNs, due to dense
dependencies making the order unpredictable. Imposing
position on inherently position-invariant graphs causes de-
coding failures – even DAGs can admit exponentially many
valid orders. DIGGED instead is position-less; it learns
a unique, position-free sequential “change-of-basis” that
encodes a graph as its construction steps. Each token in-
cludes a set of instructions to recreate the graph. For further
explanations and deeper analysis, please refer to App. G.

6.2. Ablation Study on Speed-Accuracy Elasticity.

For each solver module for the sub-problems in Sec. 3, we
offer brute force, approximation, and heuristic algorithms.

Table 6. Results of our controlled study comparing with simpler
node-order encodings. Only FoM is reported for CKT.

Valid Unique Novel RMSE Pearson’s r 1st 2nd 3rd

Graph2NS-Default ENAS 96.1 99.17 100 0.746 0.656 0.746 0.744 0.743
BN 95.8 96.4 94.8 0.498 0.869 -11590 -11685 -11991
CKT 80.2 71.0 96.8 0.695 0.738 220.96 177.29 148.92

Graph2NS-BFS ENAS 40.8 100 100 0.806 0.595 0.746 0.746 0.745
BN 2.2 100 100 0.591 0.819 -11601 -11892 -11950
CKT 0.1% 100 100 0.676 0.751 - - -

Graph2NS-Random ENAS 0% - - 0.859 0.508 - - -
BN 8.4 100 100 0.535 0.857 -11523 -11624 -11909
CKT 0% - - 0.680 0.760 - - -

DIGGED ENAS 100 98.7 99.9 0.912 0.386 0.749 0.748 0.748
BN 100 97.6 100 0.953 0.712 -11110 -11250 -11293
CKT 100 100 78.8 0.627 0.787 306.32 296.82 265.53

Since subgraph isomorphism, max clique, and hitting set
are all NP-hard, we toggle between brute, approximate or
heuristic solvers based on problem size. We state our choice
of approximation and heuristic variants, along with any hy-
perparameters to control solution quality, in App. B. We an-
ticipate the setting of larger data sizes, where faster solvers
must be chosen out of necessity. Our main results on CKT
(the smallest dataset) already reflect exact solutions or high-
quality approximations, so we use this dataset to benchmark
the performance & efficiency impact of using coarser ap-
proximations. We separately conduct four possible changes
to the DIGGED algorithm: (1) For Subdue (FSM), we use
beam width = 3 instead of 4; (2) for max clique, we use the
greedy algorithm with K = 10 random starting nodes; (3)
for hitting set, we do beam search with beam width = 10
instead of exact; (4) we skip disambiguation for early con-
vergence. We find Ablation 3 did not introduce meaningful
changes, as beam search equates to an exact procedure for
small input sizes. Table 7 shows Ablations 1, 2, 4 speed up
execution with minimal quality loss; max clique offers the
best accuracy/speed trade-off. Latent space quality and top
3 results benefit slightly from more accurate FSM and max
clique solutions, but results are still reasonably close.

6.3. Case Study on Lossless Compression Rate.

We empirically analyze how much the total size |H| is com-
pressed relative to the number of rules. We see in Fig. 4
that DIGGED achieves 2.2%, 2.6%, 1.56% compression
ratio (initial |H| to pre-termination |H|, when every initial
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Table 4. Predictive Performance of Latent Representations on CktBench101. We follow the same settings as Dong et al. (2023).

Evaluation Metric Gain BW PM FoM

RMSE # Pearson’s r " RMSE # Pearson’s r " RMSE # Pearson’s r " RMSE # Pearson’s r "
PACE 0.644 ± 0.003 0.762 ± 0.002 0.896 ± 0.003 0.442 ± 0.001 0.970 ± 0.003 0.226 ± 0.001 0.889 ± 0.003 0.423 ± 0.001
DAGNN 0.695 ± 0.002 0.707 ± 0.001 0.881 ± 0.002 0.453 ± 0.001 0.969 ± 0.003 0.231 ± 0.002 0.877 ± 0.003 0.442 ± 0.001
D-VAE 0.681 ± 0.003 0.739 ± 0.001 0.914 ± 0.002 0.394 ± 0.001 0.956 ± 0.003 0.301 ± 0.002 0.897 ± 0.003 0.374 ± 0.001

GCN 0.976 ± 0.003 0.140 ± 0.002 0.970 ± 0.003 0.236 ± 0.001 0.993 ± 0.002 0.171 ± 0.001 0.974 ± 0.003 0.217 ± 0.001
GIN 0.890 ± 0.003 0.352 ± 0.001 0.926 ± 0.003 0.251 ± 0.001 0.985 ± 0.004 0.187 ± 0.002 0.910 ± 0.003 0.284 ± 0.001
NGNN 0.882 ± 0.004 0.433 ± 0.001 0.933 ± 0.003 0.247 ± 0.001 0.984 ± 0.004 0.196 ± 0.002 0.926 ± 0.002 0.267 ± 0.001
Pathformer 0.816 ± 0.003 0.529 ± 0.001 0.895 ± 0.003 0.410 ± 0.001 0.967 ± 0.002 0.297 ± 0.001 0.887 ± 0.002 0.391 ± 0.001

CktGNN 0.607 ± 0.003 0.791 ± 0.001 0.873 ± 0.003 0.479 ± 0.001 0.973 ± 0.002 0.217 ± 0.001 0.854 ± 0.003 0.491 ± 0.002
DIGGED (GNN) 0.630 ± 0.005 0.771 ± 0.004 0.635 ± 0.006 0.784 ± 0.001 0.990 ± 0.001 0.314 ± 0.001 0.627 ± 0.002 0.787 ± 0.001
DIGGED (TOKEN) — — — — — — 1.005 ± 0.0002 0.199 ± 0.001

Table 5. Predictive performance of latent representation on ENAS
& BN test set. We follow same settings as Zhang et al. (2019).

Model ENAS BN

RMSE # Pearson’s r " RMSE # Pearson’s r "
S-VAE 0.644 ± 0.003 0.762 ± 0.002 0.896 ± 0.003 0.442 ± 0.001
GraphRNN 0.695 ± 0.002 0.707 ± 0.001 0.881 ± 0.002 0.453 ± 0.001
GCN 0.681 ± 0.003 0.739 ± 0.001 0.914 ± 0.002 0.394 ± 0.001

DeepGMG 0.976 ± 0.003 0.140 ± 0.002 0.970 ± 0.003 0.236 ± 0.001
D-VAE 0.890 ± 0.003 0.352 ± 0.001 0.926 ± 0.003 0.251 ± 0.001
DAGNN 0.882 ± 0.004 0.433 ± 0.001 0.933 ± 0.003 0.247 ± 0.001
DIGGED (GNN) 0.912 ± 0.001 0.386 ± 0.001 0.953 ± 0.052 0.712 ± 0.013
DIGGED (TOKEN) 0.987 ± 0.001 0.049 ± 0.006 0.989 ± 0.0001 0.129 ± 0.002

6. Discussion
6.1. Ablation Study on Simpler Sequential Descriptions.

We perform a controlled ablation in Table 6 fixing DAGNN
as the encoder and the same Transformer decoder architec-
ture used to train DIGGED. We vary various node-order
encodings as the output targets to test whether simpler SD
encodings suffice. We target three node-orderings – default
order (that is, the order provided by the data, normally a
topological order with domain-specific criteria), BFS from
a randomly chosen seed node (as in You et al. (2018b)),
or a random order – for comparison. We see the default
order is unique in most cases, but its unguaranteed validity
results in lower BO optimization results (following Zhang
et al. (2019) to deal with invalid samples). BFS or random
ordering destroys the decoder’s ability to generate valid
examples. BFS is do-able for mostly linear path graphs
in ENAS but is entirely infeasible for BNs, due to dense
dependencies making the order unpredictable. Imposing
position on inherently position-invariant graphs causes de-
coding failures – even DAGs can admit exponentially many
valid orders. DIGGED instead is position-less; it learns
a unique, position-free sequential “change-of-basis” that
encodes a graph as its construction steps. Each token in-
cludes a set of instructions to recreate the graph. For further
explanations and deeper analysis, please refer to App. G.

6.2. Ablation Study on Speed-Accuracy Elasticity.

For each solver module for the sub-problems in Sec. 3, we
offer brute force, approximation, and heuristic algorithms.

Table 6. Results of our controlled study comparing with simpler
node-order encodings. Only FoM is reported for CKT.

Valid Unique Novel RMSE Pearson’s r 1st 2nd 3rd

Graph2NS-Default ENAS 96.1 99.17 100 0.746 0.656 0.746 0.744 0.743
BN 95.8 96.4 94.8 0.498 0.869 -11590 -11685 -11991
CKT 80.2 71.0 96.8 0.695 0.738 220.96 177.29 148.92

Graph2NS-BFS ENAS 40.8 100 100 0.806 0.595 0.746 0.746 0.745
BN 2.2 100 100 0.591 0.819 -11601 -11892 -11950
CKT 0.1% 100 100 0.676 0.751 - - -

Graph2NS-Random ENAS 0% - - 0.859 0.508 - - -
BN 8.4 100 100 0.535 0.857 -11523 -11624 -11909
CKT 0% - - 0.680 0.760 - - -

DIGGED ENAS 100 98.7 99.9 0.912 0.386 0.749 0.748 0.748
BN 100 97.6 100 0.953 0.712 -11110 -11250 -11293
CKT 100 100 78.8 0.627 0.787 306.32 296.82 265.53

Since subgraph isomorphism, max clique, and hitting set
are all NP-hard, we toggle between brute, approximate or
heuristic solvers based on problem size. We state our choice
of approximation and heuristic variants, along with any hy-
perparameters to control solution quality, in App. B. We an-
ticipate the setting of larger data sizes, where faster solvers
must be chosen out of necessity. Our main results on CKT
(the smallest dataset) already reflect exact solutions or high-
quality approximations, so we use this dataset to benchmark
the performance & efficiency impact of using coarser ap-
proximations. We separately conduct four possible changes
to the DIGGED algorithm: (1) For Subdue (FSM), we use
beam width = 3 instead of 4; (2) for max clique, we use the
greedy algorithm with K = 10 random starting nodes; (3)
for hitting set, we do beam search with beam width = 10
instead of exact; (4) we skip disambiguation for early con-
vergence. We find Ablation 3 did not introduce meaningful
changes, as beam search equates to an exact procedure for
small input sizes. Table 7 shows Ablations 1, 2, 4 speed up
execution with minimal quality loss; max clique offers the
best accuracy/speed trade-off. Latent space quality and top
3 results benefit slightly from more accurate FSM and max
clique solutions, but results are still reasonably close.

6.3. Case Study on Lossless Compression Rate.

We empirically analyze how much the total size |H| is com-
pressed relative to the number of rules. We see in Fig. 4
that DIGGED achieves 2.2%, 2.6%, 1.56% compression
ratio (initial |H| to pre-termination |H|, when every initial
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Table 7. Results of ablation study, quantifying speed-accuracy
tradeoffs for each module. RMSE # (left) and Pearson r " (right)
is reported for FoM. Compress ratio is defined in Sec. 6.3.

Unique Novel FoM 1st 2nd 3rd %Faster Compress Ratio

Abl.1 65.6 69.1 0.624 0.786 267.55 253.61 246.78 562% 2.04
Abl.2 91.3 85.1 0.617 0.797 278.93 278.93 267.61 1844% 2.13
Abl.3 97.3 100 0.625 0.785 306.32 290.42 260.97 ⇠300% 2.32

DIGGED 98.7 99.9 0.627 0.787 306.32 296.82 265.53 0% 2.18

Figure 4. We show M := |H| as a function of iteration (same as
the number of rules induced). Axes are scaled to 1.0 for standard-
ization across datasets. The lower legend follows the format initial
|H| ! pre-termination |H| ! post-termination |H| (=|D|).

connected component is contracted to a single node). For
convenience, we only show compression for the initial call
to Algo. 2 (iter = 0 in Algo. 1), prior to disambiguation. We
observe the trend: linear structures tend to achieve greater
total compression ratio at the tradeoff of higher grammar
complexity. For example, ENAS DAGs are linear path-like
graphs (with a few skip connections), whereas BN DAGs
are graphical models with highly interconnected topologies.
CKT DAGs are somewhere in between, with main stages
lined up consecutively but also intricate, parallel configu-
rations. Thus, we see compression ratio from highest to
lowest: ENAS, CKT, BN. For BN, we see a small (845)
number of rules relative to its total size (200k) responsible
for a large compression ratio. Intuitively, DIGGED uses
the neighborhood topology to deduce a maximally compati-
ble instruction set, so simpler neighborhood topologies like
those found in ENAS graphs makes achieving compatibil-
ity across occurrences easier, resulting in much more rules
(7504). Meanwhile, complex neighborhood topologies in
BN may be inherently incompatible with any rule, so there
exists some limit on how much compression is possible.

6.4. Case study on Real-World Use Case.

DIGGED successfully generates high-performing analog
circuit designs by inducing a data-driven grammar, balanc-
ing generalization with domain specificity. The case study
(App. E) shows its ability to optimize op-amp topologies,
where traditional methods focus on device sizing for fixed

Figure 5. We stratify the test error distribution across the parse
length. For reference, we also include a count of the number of
test set examples of each parse length.

topologies, and existing graph-based approaches rely on
predefined substructures. DIGGED constructs designs step-
by-step, enforcing meaningful constraints that ensure stabil-
ity and explainability (App. E.1). Expert evaluation of the
highest-performing circuits confirms the validity of many
designs while highlighting areas for refinement (App. E.2).
Compared to standard black-box optimization baselines,
DIGGED’s grammar-guided search provides interpretable
solutions with improved structural integrity (App. E.3).

6.5. Case study on Representation Continuity.

We also use BN as a case study for the relationship be-
tween per-sample compression, i.e. the length of its rule
sequence, and downstream predictive performance, i.e. the
error from a fitted SGP regressor. In Fig. 5, we find that
longer rule sequences are more informative, resulting in
an inverse relationship between the description length and
the test error. By viewing grammar induction as lossless
compression (Section 6), we can use the length as a rough
estimate of per-sample compression ratio. The BN dataset
is also apt for this study because every DAG has a fixed
set of nodes, so we don’t need to normalize for the initial
size |H|. We find in Fig. 5 that the representations, in gen-
eral, become more discriminative with longer parses. We
believe this is attributed to compression being an explicit
form of information bottleneck (Tishby et al., 2000), where
our MDL-guided compression explicitly optimizes for rep-
resentation compactness, via compositionality, to form a
richer representation space amenable for downstream tasks.

7. Conclusion
We introduce DIGGED, a principled and efficient mapping
from DAGs to sequences via graph grammar parsing. The
resulting compact, unambiguous derivations enable a one-to-
one problem mapping to sequence modeling. Experiments
on real-world optimization problems demonstrate superior
performance. An exciting direction is to explore composi-
tional reasoning capabilities with DIGGED representations.
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(App. E) shows its ability to optimize op-amp topologies,
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topologies, and existing graph-based approaches rely on
predefined substructures. DIGGED constructs designs step-
by-step, enforcing meaningful constraints that ensure stabil-
ity and explainability (App. E.1). Expert evaluation of the
highest-performing circuits confirms the validity of many
designs while highlighting areas for refinement (App. E.2).
Compared to standard black-box optimization baselines,
DIGGED’s grammar-guided search provides interpretable
solutions with improved structural integrity (App. E.3).

6.5. Case study on Representation Continuity.

We also use BN as a case study for the relationship be-
tween per-sample compression, i.e. the length of its rule
sequence, and downstream predictive performance, i.e. the
error from a fitted SGP regressor. In Fig. 5, we find that
longer rule sequences are more informative, resulting in
an inverse relationship between the description length and
the test error. By viewing grammar induction as lossless
compression (Section 6), we can use the length as a rough
estimate of per-sample compression ratio. The BN dataset
is also apt for this study because every DAG has a fixed
set of nodes, so we don’t need to normalize for the initial
size |H|. We find in Fig. 5 that the representations, in gen-
eral, become more discriminative with longer parses. We
believe this is attributed to compression being an explicit
form of information bottleneck (Tishby et al., 2000), where
our MDL-guided compression explicitly optimizes for rep-
resentation compactness, via compositionality, to form a
richer representation space amenable for downstream tasks.

7. Conclusion
We introduce DIGGED, a principled and efficient mapping
from DAGs to sequences via graph grammar parsing. The
resulting compact, unambiguous derivations enable a one-to-
one problem mapping to sequence modeling. Experiments
on real-world optimization problems demonstrate superior
performance. An exciting direction is to explore composi-
tional reasoning capabilities with DIGGED representations.
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5. Results

Table 2. Prior validity, uniqueness and novelty (%). We follow the
same settings as Zhang et al. (2019).
Methods Neural architectures Bayesian networks

Accuracy Validity Uniqueness Novelty Accuracy Validity Uniqueness Novelty

D-VAE 99.96 100.00 37.26 100.00 99.94 98.84 38.98 98.01
S-VAE 99.98 100.00 37.03 99.99 99.99 100.00 35.51 99.70
GraphRNN 99.85 99.84 29.77 100.00 96.71 100.00 27.30 98.57
GCN 98.70 99.53 34.00 100.00 99.81 99.02 32.84 99.40
DeepGMG 94.98 98.66 46.37 99.93 47.74 98.86 57.27 98.49

DIGGED (GNN) 100 100 98.7 99.9 100 100 97.6 100
DIGGED (TOKEN) 100 100 25.4 37.8 100 100 98.67 26.67

Table 3. Effectiveness in real-world electronic circuit design.
Training data is CktBench101 (Dong et al., 2023) for all baselines
except top group. CktGNN also has an option to use CktBench301
as pivots in the BO. We also include top 90/95/max designs from
CktBench101 and CktBench301.

Methods Valid DAGs (%) " Valid circuits (%) " Novel circuits (%) " BO (FoM) "
PACE 83.12 75.52 97.14 33.2742
DAGNN 83.10 74.21 97.19 33.2742
D-VAE 82.12 73.93 97.15 32.3778

GCN 81.02 72.03 97.01 31.6244
GIN 80.92 73.17 96.88 31.6244
NGNN 82.17 73.22 95.29 32.2827
Graphormer 82.81 72.70 94.80 32.2827

CktGNN 98.92 98.92 92.29 33.4364
CktGNN (CktBench301) — — — 190.2354

CktBench101 (90%, 95%, max) 100 100 0
186.3870
233.1829
326.6657

CktBench301 (90%, 95%, max) 100 100 100
90.8379

119.9001
197.2296

DIGGED (GNN) 100 100 78.80 310.2635
DIGGED (TOKEN) 92.2 92.2 60.7 —

5.1. Unconditional Generation

ENAS & BN. Shown in Table 2, DIGGED ensures Validity
and achieves near 100% Uniqueness on ENAS and BN,
> 50% and > 40% higher than the second best method. On
BNs, it’s the only method achieving 100% Novelty, showing
ability to sample diverse, combinatorial structures.

CKT. Shown in Table 3, DIGGED ensures 100% Validity
both at the syntax (DAG) and semantic (circuit) level, serv-
ing as a powerful complement to synthetic data generation
pipelines.

5.2. Predictive Performance

CKT. As shown in Table 4, DIGGED produces discrimina-
tive latent representations when combining a dedicated DAG
encoder with sequence-based decoding with Transformers.
It achieves 26.5% lower RMSE and 60% higher Pearson r
on the holistic metric, FoM, over the next best (CktGNN),
which is a domain-specific GNN that uses hand-selected
motifs to form a subgraph basis.

ENAS. As shown in Table 5, DIGGED slightly underper-
forms the best generative model encoder (DAGNN). We
suspect that this is due to the large number of rules (7504)
in grammar, making dictionary learning cumbersome.

BN. We observe an interesting case of high Pearson r but
a more modest RMSE. We conduct a closer, visual, and
quantitative investigation of this result in App. F, showing
a global, linear trend. We believe this to be a consequence
of our sequence learning framework, where there is rep-
resentation continuity in the latent space. This showcases
the downstream representation learning advantages of train-
ing a modern Transformer architecture on a principled and
congruous sequence representation.

5.3. Bayesian Optimization

(a) ENAS (WS-Acc:
74.8, 74.9)

A

T

E

DX

S

L

B

(b) BN (Ground-truth)

input

-gm+

R -gm+

output

(c) CKT (FoM:
306.32)

Figure 3. We visualize the best discovered designs from BO. We
reproduce the same BO and evaluation setup as Zhang et al. (2019);
Pham et al. (2018); Dong et al. (2023).

In Figure 3, we visualize the best, novel designs found
during BO.

CKT. DIGGED generated novel designs that exceeded the
best design in CktBench301, with the best one only 5%
lower in FoM than the best design in CktBench101. Visu-
alized in Fig. 3, we see a simple but effective double-stage
amplifier, with a parallel resistor configuration, with a FoM
of 306.32. We visualize additional designs in App. E, and
observe that they all have short derivation lengths, implicitly
capturing simplicity, an essential requirement for real-world
circuit design. More details on baselines are in App. E.3.

ENAS. In Fig. 3, we see a novel architecture that combines
the overall topology of the best designs found by Zhang
et al. (2019) with the consecutive avg. pooling layer design
found by Bowman et al. (2015). We also recover one of the
best (top 1%) designs in the dataset, with a weight-sharing
accuracy of 74.9. This shows the model is versatile, able to
reconstruct existing designs and combine aspects of designs
found by different previous models.

BN. In Fig. 3, we were able to recover all the dependen-
cies in the ground-truth model ((Lauritzen & Spiegelhalter,
1988)). This is impressive considering that DIGGED dis-
covered it on the 5th round of BO.
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Figure 1. We adopt the edNCE grammar formalism. (Top): Dataset D = {H1, H2, H3}; (Middle): Step 1 (Sec 3.2.1). Our approximate
frequent subgraph mining library finds candidate subgraphs. As an example, the induced subgraph from nodes 1 & 2 in all three DAGs
is considered. Its occurrences in H1, H2, H3 are grounded. Step 2 (Sec 3.2.2). For each possible assignment of gray edge directions,
bounds on the set of instructions are deduced. For example, the subgraph occurrence in H1 includes into I , “for each green in-neighbor
(gray), add out-edge (black) from node 2”, and excludes from I , ”for each green in-neighbor, add out-edge (black) from node 1”. H2

includes into I: “for each green out-neighbor, add out-edges from both nodes 1 and 2”. Suppose we had reversed the gray arrow in H1.
Then, the exclusion set of case H1 conflicts with the inclusion set of H2, since it’s unclear if we should add out-edges from both 1 & 2
to each green out-neighbor, or just node 2. Intuitively, cases that differ in the precondition of edge direction are labeled with separate
letters (e.g. a vs b), inducing different but non-conflicting instructions. Step 3 (Sec 3.2.2). Given bounds on the instruction set for each
motif occurrence, the final set of instructions is deduced from the (approximate) solution of a max clique problem. Each node is a (motif
occurrence, edge redirections) realization. Each edge indicates compatibility. Step 4 (Sec 3.2.3). The candidate motif and the associated
solution to Step 3 which minimizes the total data description length is chosen to define a grammar rule. Then, Steps 1-4 are repeated until
convergence. (Bottom): A grammar rule consists of a subgraph (gray) and instructions to connect it to the neighborhood. Instructions are
grouped by letters, identifying the node label and its directional relationship to the parent gray node.

ing to G. A ) B represents one rewriting step, and ⇤)
the transitive relation, i.e. derivation. The language of
G, denoted as L(G), is the set of non-isomorphic directed
graphs {H | S ⇤) H}. Two directed graphs H1, H2 are
isomorphic if there is some bijective mapping f of nodes,
f : VH1 ! VH2 s.t. (u, v) 2 EH1 , (f(u), f(v)) 2 EH2 .
A subgraph H 0 of H = (V,E,�) is a tuple (V 0, E0,�0) s.t.
V 0 ✓ V,E0 = {(v, �, w) 2 E | v, w 2 V 0},�0 : V 0 ! ⌃
and �0 is � restricted to V 0.

3.2. Unsupervised Grammar Induction

Given a dataset D = {Hi | i = 1, . . . , |D|}, we create
the composite graph H = (

S
i
VHi ,

S
i
EHi) with |D| con-

nected components. Through an iterative lossless compres-
sion algorithm, the description for H is refined to only |D|

isolated nodes (each with label S) and |D| parses according
to its induced grammar GD. We describe the main compu-
tation steps of each iteration, emphasizing ideas rather than
notation. Further details and pseudocode are in App. B.

3.2.1. FREQUENT SUBGRAPH MINING

The first step is to discover common motifs, that is, repeti-
tive instances of the same subgraph, within the current H .
We adopt the fast, approximate FSM library Subdue (Holder,
1989) on H to obtain a list of common motifs. Our key inno-
vation is to process FSM outputs as follows: for components
containing a non-terminal node, only subgraphs with that
non-terminal node are considered. This simplifies the parse
tree to a rooted path. For each motif, we then ground the
occurrences by running subgraph isomorphism, parallelized
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5. Results

Table 2. Prior validity, uniqueness and novelty (%). We follow the
same settings as Zhang et al. (2019).
Methods Neural architectures Bayesian networks

Accuracy Validity Uniqueness Novelty Accuracy Validity Uniqueness Novelty

D-VAE 99.96 100.00 37.26 100.00 99.94 98.84 38.98 98.01
S-VAE 99.98 100.00 37.03 99.99 99.99 100.00 35.51 99.70
GraphRNN 99.85 99.84 29.77 100.00 96.71 100.00 27.30 98.57
GCN 98.70 99.53 34.00 100.00 99.81 99.02 32.84 99.40
DeepGMG 94.98 98.66 46.37 99.93 47.74 98.86 57.27 98.49

DIGGED (GNN) 100 100 98.7 99.9 100 100 97.6 100
DIGGED (TOKEN) 100 100 25.4 37.8 100 100 98.67 26.67

Table 3. Effectiveness in real-world electronic circuit design.
Training data is CktBench101 (Dong et al., 2023) for all baselines
except top group. CktGNN also has an option to use CktBench301
as pivots in the BO. We also include top 90/95/max designs from
CktBench101 and CktBench301.

Methods Valid DAGs (%) " Valid circuits (%) " Novel circuits (%) " BO (FoM) "
PACE 83.12 75.52 97.14 33.2742
DAGNN 83.10 74.21 97.19 33.2742
D-VAE 82.12 73.93 97.15 32.3778

GCN 81.02 72.03 97.01 31.6244
GIN 80.92 73.17 96.88 31.6244
NGNN 82.17 73.22 95.29 32.2827
Graphormer 82.81 72.70 94.80 32.2827

CktGNN 98.92 98.92 92.29 33.4364
CktGNN (CktBench301) — — — 190.2354

DIGGED (GNN) 100 100 78.80 310.2635
DIGGED (TOKEN) 92.2 92.2 60.7 —

5.1. Unconditional Generation

ENAS & BN. Shown in Table 2, DIGGED ensures Validity
and achieves near 100% Uniqueness on ENAS and BN,
> 50% and > 40% higher than the second best method. On
BNs, it’s the only method achieving 100% Novelty, showing
ability to sample diverse, combinatorial structures.

CKT. Shown in Table 3, DIGGED ensures 100% Validity
both at the syntax (DAG) and semantic (circuit) level, serv-
ing as a powerful complement to synthetic data generation
pipelines.

5.2. Predictive Performance

CKT. As shown in Table 4, DIGGED produces discrimina-
tive latent representations when combining a dedicated DAG
encoder with sequence-based decoding with Transformers.
It achieves 26.5% lower RMSE and 60% higher Pearson r
on the holistic metric, FoM, over the next best (CktGNN),
which is a domain-specific GNN that uses hand-selected
motifs to form a subgraph basis.

ENAS. As shown in Table 5, DIGGED slightly underper-
forms the best generative model encoder (DAGNN). We
suspect that this is due to the large number of rules (7504)
in grammar, making dictionary learning cumbersome.

BN. We observe an interesting case of high Pearson r but
a more modest RMSE. We conduct a closer, visual, and

quantitative investigation of this result in App. F, showing
a global, linear trend. We believe this to be a consequence
of our sequence learning framework, where there is rep-
resentation continuity in the latent space. This showcases
the downstream representation learning advantages of train-
ing a modern Transformer architecture on a principled and
congruous sequence representation.

5.3. Bayesian Optimization
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Figure 3. We visualize the best discovered designs from BO. We
reproduce the same BO and evaluation setup as Zhang et al. (2019);
Pham et al. (2018); Dong et al. (2023).

In Figure 3, we visualize the best, novel designs found
during BO.

CKT. DIGGED generated novel designs that exceeded the
best design in CktBench301, with the best one only 5%
lower in FoM than the best design in CktBench101. Visu-
alized in Fig. 3, we see a simple but effective double-stage
amplifier, with a parallel resistor configuration, with a FoM
of 306.32. We visualize additional designs in App. E, and
observe that they all have short derivation lengths, implicitly
capturing simplicity, an essential requirement for real-world
circuit design. More details on baselines are in App. E.3.

ENAS. In Fig. 3, we see a novel architecture that combines
the overall topology of the best designs found by Zhang
et al. (2019) with the consecutive avg. pooling layer design
found by Bowman et al. (2015). We also recover one of the
best (top 1%) designs in the dataset, with a weight-sharing
accuracy of 74.9. This shows the model is versatile, able to
reconstruct existing designs and combine aspects of designs
found by different previous models.

BN. In Fig. 3, we were able to recover all the dependen-
cies in the ground-truth model ((Lauritzen & Spiegelhalter,
1988)). This is impressive considering that DIGGED dis-
covered it on the 5th round of BO.
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Table 4. Predictive Performance of Latent Representations on CktBench101. We follow the same settings as Dong et al. (2023).

Evaluation Metric Gain BW PM FoM

RMSE # Pearson’s r " RMSE # Pearson’s r " RMSE # Pearson’s r " RMSE # Pearson’s r "
PACE 0.644 ± 0.003 0.762 ± 0.002 0.896 ± 0.003 0.442 ± 0.001 0.970 ± 0.003 0.226 ± 0.001 0.889 ± 0.003 0.423 ± 0.001
DAGNN 0.695 ± 0.002 0.707 ± 0.001 0.881 ± 0.002 0.453 ± 0.001 0.969 ± 0.003 0.231 ± 0.002 0.877 ± 0.003 0.442 ± 0.001
D-VAE 0.681 ± 0.003 0.739 ± 0.001 0.914 ± 0.002 0.394 ± 0.001 0.956 ± 0.003 0.301 ± 0.002 0.897 ± 0.003 0.374 ± 0.001

GCN 0.976 ± 0.003 0.140 ± 0.002 0.970 ± 0.003 0.236 ± 0.001 0.993 ± 0.002 0.171 ± 0.001 0.974 ± 0.003 0.217 ± 0.001
GIN 0.890 ± 0.003 0.352 ± 0.001 0.926 ± 0.003 0.251 ± 0.001 0.985 ± 0.004 0.187 ± 0.002 0.910 ± 0.003 0.284 ± 0.001
NGNN 0.882 ± 0.004 0.433 ± 0.001 0.933 ± 0.003 0.247 ± 0.001 0.984 ± 0.004 0.196 ± 0.002 0.926 ± 0.002 0.267 ± 0.001
Pathformer 0.816 ± 0.003 0.529 ± 0.001 0.895 ± 0.003 0.410 ± 0.001 0.967 ± 0.002 0.297 ± 0.001 0.887 ± 0.002 0.391 ± 0.001

CktGNN 0.607 ± 0.003 0.791 ± 0.001 0.873 ± 0.003 0.479 ± 0.001 0.973 ± 0.002 0.217 ± 0.001 0.854 ± 0.003 0.491 ± 0.002
DIGGED (GNN) 0.630 ± 0.005 0.771 ± 0.004 0.635 ± 0.006 0.784 ± 0.001 0.990 ± 0.001 0.314 ± 0.001 0.627 ± 0.002 0.787 ± 0.001
DIGGED (TOKEN) — — — — — — 1.005 ± 0.0002 0.199 ± 0.001

Table 5. Predictive performance of latent representation on ENAS
& BN test set. We follow same settings as Zhang et al. (2019).

Model ENAS BN

RMSE # Pearson’s r " RMSE # Pearson’s r "
S-VAE 0.644 ± 0.003 0.762 ± 0.002 0.896 ± 0.003 0.442 ± 0.001
GraphRNN 0.695 ± 0.002 0.707 ± 0.001 0.881 ± 0.002 0.453 ± 0.001
GCN 0.681 ± 0.003 0.739 ± 0.001 0.914 ± 0.002 0.394 ± 0.001

DeepGMG 0.976 ± 0.003 0.140 ± 0.002 0.970 ± 0.003 0.236 ± 0.001
D-VAE 0.890 ± 0.003 0.352 ± 0.001 0.926 ± 0.003 0.251 ± 0.001
DAGNN 0.882 ± 0.004 0.433 ± 0.001 0.933 ± 0.003 0.247 ± 0.001
DIGGED (GNN) 0.912 ± 0.001 0.386 ± 0.001 0.953 ± 0.052 0.712 ± 0.013
DIGGED (TOKEN) 0.987 ± 0.001 0.049 ± 0.006 0.989 ± 0.0001 0.129 ± 0.002

6. Discussion
6.1. Ablation Study on Simpler Sequential Descriptions.

We perform a controlled ablation in Table 6 fixing DAGNN
as the encoder and the same Transformer decoder architec-
ture used to train DIGGED. We vary various node-order
encodings as the output targets to test whether simpler SD
encodings suffice. We target three node-orderings – default
order (that is, the order provided by the data, normally a
topological order with domain-specific criteria), BFS from
a randomly chosen seed node (as in You et al. (2018b)),
or a random order – for comparison. We see the default
order is unique in most cases, but its unguaranteed validity
results in lower BO optimization results (following Zhang
et al. (2019) to deal with invalid samples). BFS or random
ordering destroys the decoder’s ability to generate valid
examples. BFS is do-able for mostly linear path graphs
in ENAS but is entirely infeasible for BNs, due to dense
dependencies making the order unpredictable. Imposing
position on inherently position-invariant graphs causes de-
coding failures – even DAGs can admit exponentially many
valid orders. DIGGED instead is position-less; it learns
a unique, position-free sequential “change-of-basis” that
encodes a graph as its construction steps. Each token in-
cludes a set of instructions to recreate the graph. For further
explanations and deeper analysis, please refer to App. G.

6.2. Ablation Study on Speed-Accuracy Elasticity.

For each solver module for the sub-problems in Sec. 3, we
offer brute force, approximation, and heuristic algorithms.

Table 6. Results of our controlled study comparing with simpler
node-order encodings. Only FoM is reported for CKT.

Valid Unique Novel RMSE Pearson’s r 1st 2nd 3rd

Graph2NS-Default ENAS 96.1 99.17 100 0.746 0.656 0.746 0.744 0.743
BN 95.8 96.4 94.8 0.498 0.869 -11590 -11685 -11991
CKT 80.2 71.0 96.8 0.695 0.738 220.96 177.29 148.92

Graph2NS-BFS ENAS 40.8 100 100 0.806 0.595 0.746 0.746 0.745
BN 2.2 100 100 0.591 0.819 -11601 -11892 -11950
CKT 0.1% 100 100 0.676 0.751 - - -

Graph2NS-Random ENAS 0% - - 0.859 0.508 - - -
BN 8.4 100 100 0.535 0.857 -11523 -11624 -11909
CKT 0% - - 0.680 0.760 - - -

DIGGED ENAS 100 98.7 99.9 0.912 0.386 0.749 0.748 0.748
BN 100 97.6 100 0.953 0.712 -11110 -11250 -11293
CKT 100 100 78.8 0.627 0.787 306.32 296.82 265.53

Since subgraph isomorphism, max clique, and hitting set
are all NP-hard, we toggle between brute, approximate or
heuristic solvers based on problem size. We state our choice
of approximation and heuristic variants, along with any hy-
perparameters to control solution quality, in App. B. We an-
ticipate the setting of larger data sizes, where faster solvers
must be chosen out of necessity. Our main results on CKT
(the smallest dataset) already reflect exact solutions or high-
quality approximations, so we use this dataset to benchmark
the performance & efficiency impact of using coarser ap-
proximations. We separately conduct four possible changes
to the DIGGED algorithm: (1) For Subdue (FSM), we use
beam width = 3 instead of 4; (2) for max clique, we use the
greedy algorithm with K = 10 random starting nodes; (3)
for hitting set, we do beam search with beam width = 10
instead of exact; (4) we skip disambiguation for early con-
vergence. We find Ablation 3 did not introduce meaningful
changes, as beam search equates to an exact procedure for
small input sizes. Table 7 shows Ablations 1, 2, 4 speed up
execution with minimal quality loss; max clique offers the
best accuracy/speed trade-off. Latent space quality and top
3 results benefit slightly from more accurate FSM and max
clique solutions, but results are still reasonably close.

6.3. Case Study on Lossless Compression Rate.

We empirically analyze how much the total size |H| is com-
pressed relative to the number of rules. We see in Fig. 4
that DIGGED achieves 2.2%, 2.6%, 1.56% compression
ratio (initial |H| to pre-termination |H|, when every initial
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Unconditional Generation – How well we can generate samples by decoding from a Gaussian prior.
Predictive Performance – How well the latent embeddings of DAGs can predict their performances.
Bayesian Optimization – How well the learned latent space can be used for searching for high-performance DAGs through BO.
(Left) Prior validity, uniqueness and novelty (%). (Right) Predictive performance of latent representation on ENAS & BN test set. 

(Left) Predictive Performance of Latent Representations on CktBench101. (Right) Test error distribution across the parse length 
(blue). For reference, we also include a count of the number of test set examples of each parse length (red).

(Left) We visualize the best discovered designs from BO. (Right) Effectiveness in real-world electronic circuit design.

(Left) We show graph size |H| aså function of iteration (same as the #rules induced). Lower legend follows the format initial → pre-
termination → post-termination. (Right) Controlled study comparing with simpler node-order encodings. 


