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• Copy task: given a vector of size N, output an exact copy of the vector

• Associative recall task: given N keys and N values sampled from two 
distinct vocabularies, retrieve the correct value of one key

• Parity task: given a binary vector of size N, output the parity of the 
vector

• Selective copy: given a vector of size N with T = 16 non-zero elements 
and N - T elements equal to zero, output a copy of the vector, 
discarding all elements equal to zero.
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Other Modular Arithmetic Tasks

• Two key methods that help ML models learn modular addition and 
can be applied to the Learning with Errors (LWE) problem in 
cryptography to recover 2x harder secrets than prior work

• Methods generalize and improve learning outcomes on other tasks

• Future Work:

○ Improve performance as number of terms N scales

○ Transferring techniques to other settings like real-world 
cryptanalysis

Conclusion

Synthetic Tasks

• Asymmetric functions: class                           where 

• Modular multiplication (left) and scalar product (right)

Lattice Cryptography

TL;DR Our data distribution and loss 
regularization methods improve transformer 

performance on modular arithmetic tasks, 
unlocking improvements in cryptography 

applications and other well-studied ML problems.

• Lattice cryptosystems are believed to be quantum and classically 
secure

• Lattice cryptosystems based on the Learning with Errors (LWE) 
problem are frontrunners for post-quantum standardization by 
NIST

• LWE-based cryptosystems may be quantum-resistant, but are 
they secure against classical attacks?

The dots form a lattice 𝛬 generated by taking 
Z-linear combinations of {b1, b2}. v is the 

shortest vector in the lattice. 

APPLICATION: CRYPTANALYSIS

Effect of Loss Regularization in LWE Setting 
• We apply our loss regularization to LWE (without the error)

• Adding regularization term encourages the model to avoid the 
origin, leading to faster and better convergence
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Key Improvements to ML Modular Arithmetic

MODULAR ARITHMETIC

ML Models Struggle on Modular Arithmetic

• High accuracy on modular addition across a range of # terms and 
modulus

○ Sparse examples are critical for learning

○ KL divergence of train and test sets impacts accuracy

• Models learn easy examples before hard ones (left) and repeating 
examples helps (right)

• The distribution is more important than the value of the filler input

• Our data distribution is more consistent than curriculum learning

• Loss regularization prevents model collapse when the task is hard

• Task: Given N elements                                     compute 

• Existing methods struggle to do modular arithmetic with high N and 
q, which is useful for applications of ML in cryptanalysis

• Augmenting training data with easy examples

• Loss regularization to avoid model collapse

Varying the number of non-zero elements
 in each example by sampling from these distributions

Key Results and Findings

Model performs better when trained with our 
custom loss on the LW(ithout)E problem

Training data with more diverse problem lengths yields better 
accuracy across different tasks

Our methods extend to modular multiplication and scalar 
product, but accuracy declines with higher N and q

Models can learn other modular 
arithmetic functions with our methods

Best performance of models 
on different N and q

Data distribution makes
 a big difference in learning

Some repetition (but not too much) 
improves accuracy

Accuracy on sparser examples increases 
first and in order of sparsity

BEYOND MODULAR ADDITION


