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Making Hard Problems Easier with Custom
Data Distributions and Loss Regularization:
A Case Study in Modular Arithmetic

ON\) Meta

BEYOND MODULAR ADDITION

MODULAR ARITHMETIC

/ML Models Struggle on Modular Arithmetic

. N
- Task: Given N elements [z1,%2...2N], 2; € Zg, compute $=)_;—;%i modg

TL;DR Our data distribution and loss

N regularization methods improve transformer
performance on modular arithmetic tasks,
unlocking improvements in cryptography

K)ther Modular Arithmetic Tasks \

N2
- Asymmetric functions: class h:Z} —Z, where hjx= (Z?f:l af) + ay

. L. . . . . Function % Accurac
- Existing methods struggle to do modular arithmetic with high Nand applications and other well-studied ML problems. hiiioi= (@1 +...+an)’+al modq || 95.1% :
g, which is useful for applications of ML in cryptanalysis 27;1’:::83:::12%;:3{; wpl

Models can learn other modular
arithmetic functions with our methods

APPLICATION: CRYPTANALYSIS . |
- Modular multiplication (left) and scalar product (right)
\ # Terms (N) Mod (q) || 7= 1% Accuracy # Terms (N) Mod (q) || 7= 1% Accuracy
0 29577 19080‘;? i 29577 igggz
3329 3% 3329 3%

N /
ﬁ(ey Improvements to ML Modular Arithmetic \

ﬁ_attice Cryptography

- Augmenting training data with easy examples
)  Lattice cryptosystems are believed to be quantum and classically ” 257 % ' 257 1300?
—— finv_sqrt 3329 3% 3329 3%
0.15 : fcfel;:\illt 1 secure " 29577 16050‘;? i 29577 728‘(7?
' 3329 3% 3329 3%

Our methods extend to modular multiplication and scalar
product, but accuracy declines with higher N and q
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Number of non-zero elements

/Synthetic Tasks

The dots form a lattice A generated by taking

Varying the number of non-zero elements Z-linear combinations of {b1, b2}. v is the

in each example by sampling from these distributions shortest vector in the lattice. . COpy task: given a vector of size N, output an exact copy of the vector
* Lossregularization to avoid model collapse * Lattice cryptosystems based on the Learning with Errors (LWE) - Associative recall task: given N keys and N values sampled from two
- 1 " 5 ; problem are frontrunners for post-quantum standardization by distinct vocabularies, retrieve the correct value of one key
eza(x' +y7 ,2)+((:v—w’) +-v)°), a=10" NIST : - - - -
\ J LWE Encryption - Parity task: given a binary vector of size N, output the parity of the
vector

(A-s+e)modg=Db

A € Z™" is a uniformly random m x n matrix - Selective copy: given a vector of size N with T =16 non-zero elements
p— mn
s T and N - T elements equal to zero, output a copy of the vector,

e = error, e € Zy, e ~ N(u,0) . .
g = modulus, typically a large prime discarding all elements equal to zero.

/ Key Results and Findings \

- High accuracy on modular addition across a range of # terms and

modulus :
- LWE-based cryptosystems may be quantum-resistant, but are % Accuracy
11 i . . Task # max length Taefan Ty war Funi
o Sparse examples are critical for learning they secure against classical attacks? e default _sat
Copy 32 100.0% 100.0% 100.0%
o KL divergence of train and test sets impacts accuracy 64 100.0% 100.0% 100.0%
128 94.3% 100.0% 100.0%
#Tems (V) Mod (9) || MSE 7 = 0.5% 7= 1% #Terms Mod || Training | 7 = 0.5% KL / \ 256 81.4%  98.1%  97.4%
colpey  JAcruacy (N) Q) Data f | Accuracy divergence . . . . Associative 8 32.5% 100.0% 100.0%
© s o i mo 6 27 | fwn | 12 00 Effect of Loss Regularization in LWE Setting recall 10 6% 100.0% 100.0%
; A% V% inv_sqrt 070 > . 0 . 0 . 0
974269 || 0.00  997%  100.0% fani 99.7% 354 ] ] ] . ‘
32 257 || 000  99.5%  100.0% - We apply our loss regularlzatlon to LWE (without the error) o 1.8% 100.0%  18%
3329 || 000  99.4% 100.0% 32 257 ]{ default 9;35%; 409'% Parity 32 50.3%  100.0% 100.0%
42899 || 0.00  99.4% 100.0% inv_sqrt 5% : . . . .
974269 || 000  99.5%  100.0% fomi | 98.9% 715 - Adding regularization term encourages the model to avoid the o 50.64. Y& 10007
64 257 || 001  98.9% 99.4% 64 257 || faotaul 13% 0.0 .. . 128 50.0% 99.7% 50.27
i lger oo s Foweare | 989%  98.1 origin, leading to faster and better convergence 256 50.2%  99.4%  50.2%
974269 || 0.01  98.2% 99.4% Juni 95.3% 144.0 Selective 32 100.0% 100.0% 100.0%
128 3235279 8.81 gg;? gg.(z)go 128 257 || faetault 1.3% 0.0 | Recovery % copy 64 100.0% 100.0% 100.0%
42899 0:05 94:172 97:9%2 ] inv_sqrt 96.1% 193.7 # Terms Ham'ming Mod Custom I:gss MSE Loss 128 83.4% 100.0% 100.0%
974269 || 0.04  93.3% 97.4% Suni 92.7% 289.5 (N) weight (9) a =10 a=0 256 57.2%  100.0%  99.3%
64 6 257 15% 0%
Best performance of models Data distribution makes 432382999 fggﬁ 8;2 Training data with more diverse problem lengths yields better
on different N and q a big difference in learning 974269 15% 0% \ accuracy across different tasks /
- Models learn easy examples before hard ones (left) and repeating 128 5 257 10% 0%
3329 15% 0%
. 42899 15% 0%
examples helps (right) 074260 | 10% 0% / \
100 , . o~ 256 4 257 10% 0% °
o | w0 Conclusion
80 —0.5% Acottac 42899 15% 0%
S e # data t H N=16 N —(?32(7 ?\f = 64y N =128 24260 15% 0% 141
P 2 e I P2 TR Ao T - Two key methods that help ML models learn modular addition and

sl S Model performs better when trained with our

custom loss on the LW(ithout)E problem

99.8% 99.2% 98.4% 92.7%
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99.7% 99.2% 97.2% 91.5%
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—— 5 nonzero elements accu

can be applied to the Learning with Errors (LWE) problem in
cryptography to recover 2x harder secrets than prior work
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10 nonzero elements accuracy
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Some repetition (but not too much)
iImproves accuracy
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Training completion (%)
Accuracy on sparser examples increases
first and in order of sparsity

- The distribution is more important than the value of the filler input

- Methods generalize and improve learning outcomes on other tasks

 Future Work:

- Our data distribution is more consistent than curriculum learning o Improve performance as number of terms N scales

o Transferring techniques to other settings like real-world

\ cryptanalysis /

k' Loss regularization prevents model collapse when the task is hard /
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