Federated Full-Parameter Tuning at Scale for LLMs Yao Shu*1, Wenyang Hu*2,3 See-Kiong Ng³, Bryan Kian Hsiang Low³, Fei Yu⁴ #### Objective Given random bases $\mathbf{V} = [\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_K] \in \mathbb{R}^{d \times K}$ generated by a seed s and a local update Δ , we want to project the update Δ into coordinates $$\gamma \triangleq \underset{\mathbf{y}}{\operatorname{arg\,min}} \|\mathbf{V}\mathbf{y} - \Delta\|$$ oordinates Random Bases Calculating this inversion is very costly! **Theorem 1** (Unbiased Reconstruction). Given the reconstruction in (7), we have $$\mathbb{E}\left[\widetilde{\Delta} ight] = \Delta \ .$$ **Theorem 2** (**Reconstruction Error**). *Given the reconstruction in* (7), we have $$\mathbb{E}\left[\left\|\widetilde{\Delta} - \Delta\right\|\right] \le \max\left\{2\sqrt{\frac{2\ln(2d)}{\rho K}}, \frac{2\ln(2d)}{\rho K}\right\} \left\|\Delta\right\|.$$ HKUST (GZ)¹, SAP², NUS³, Guangdong Lab of Al and Digital Economy (SZ)⁴ # Project a first-order gradient using random vectors and recover it using shared randomness #### Our Solution Ferret #### 1. Reconstruction w/o Inversion Approximate $\mathbf{V}^{\mathsf{T}}\mathbf{V}$ with \mathbf{I}_{K} $$\gamma \approx (\rho K)^{-1} \mathbf{V}^{\top} \Delta$$ $$\widetilde{\Delta} = (\rho K)^{-1} \mathbf{V} \mathbf{V}^{\top} \Delta$$ #### 2. Blockwise Reconstruction Divide the full dimension d into L blocks. Then for each block l, we have $$oldsymbol{\gamma}_l = (ho_l K)^{-1} \mathbf{V}_l^{ op} \Delta_l$$ $$\widetilde{\Delta}_l = (ho_l K_l)^{-1} \mathbf{V}_l \mathbf{V}_l^{ op} \Delta_l$$ ### **Proposition 2** (Block-Wise Reconstruction Error). For block-wise reconstruction (8) of size L, when $\sqrt{d_l} \ge K$, for any $l \in [L]$ K_l for any $l \in [L]$, $$\mathbb{E}\left[\left\|\widetilde{\Delta} - \Delta\right\|\right] < \widetilde{\mathcal{O}}\left(\sum_{l \in [L]} \frac{\|\Delta_l\|}{\rho_l K_l}\right),\,$$ which is minimized by choosing $K_l \propto \sqrt{\|\Delta_l\|/\rho_l}$. #### Reduced communication cost - High computational efficiency - Fast convergence | Algorithm | CodeAlpaca | | GSM8K | | |-----------------------------|--|---|--|--| | | LLaMA2-7B | LLaMA2-13B | LLaMA2-7B | LLaMA2-13B | | FedIT | 4.66 ± 0.18 | 6.10 ± 0.18 | 30.31 ± 0.29 | 13.46 ± 0.34 | | FedZO
FedKSeed
FedAvg | 4.58 ± 0.26
8.33 ± 0.98
15.41 ± 0.43 | 6.19 ± 0.32 10.70 ± 0.47 14.68 ± 0.26 | 30.41 ± 0.31
28.26 ± 3.60
38.30 ± 0.40 | 13.63 ± 0.34
33.67 ± 1.15
39.82 ± 0.17 | | Ferret (ours) | 12.10 ± 0.47 | 11.84 ± 0.91 | 36.10 ± 1.18 | 34.50 ± 1.42 | #### **Algorithm 1** Ferret 11 **12** Input: $\mathbf{w}_0, N, R, T, K, \eta$ 1 for each round $r \in [R]$ do for each client $j \in [N]$ in parallel do if r > 1 then // Step ①: Global Aggregation Receive $\{s^{(i)}\}_{i=1}^{N}$ and $\{\gamma_k^{(i)}\}_{i=1,k=1}^{N,K}$ Generate bases $\{\mathbf{v}_k^{(i)}\}_{i=1,k=1}^{N,K}$ using $\{s^{(i)}\}_{i=1}^{N}$ $\mathbf{w}_{r-1} \leftarrow \mathbf{w}_{r-2} - \sum_{i \in [N]} \left(\sum_{k=1}^{K} \gamma_k^{(i)} \mathbf{v}_k^{(i)}\right) / N$ $\mathbf{w}_{r,0} \leftarrow \mathbf{w}_r$ for $\underline{t} \in [T]$ do // Step ②: Local Updates $\mathbf{w}_{r,t}^{(j)} \leftarrow \mathbf{w}_{r,t-1}^{(j)} - \eta \nabla \ell(\mathbf{w}_{r,t-1}^{(j)}; \mathbf{x}_{r,t-1}^{(j)})$ // Step ③: Projected Updates Randomly set $s^{(j)}$ and generate bases $\{\mathbf{v}_k^{(j)}\}_{k=1}^{K}$ $\Delta_r^{(j)} \leftarrow \mathbf{w}_{r-1}^{(j)} - \mathbf{w}_r^{(j)}$, compute $\{\gamma_k^{(j)}\}_{k=1}^K$ with (6) Send $s^{(j)}$ and $\{\gamma_k^{(j)}\}_{k=1}^K$ to the central server