

Flow Matching for Few-Trial Neural Adaptation with Stable Latent Dynamics

Puli Wang ^{1,2}, Yu Qi ^{2,3}*, Yueming Wang ^{1,2}, Gang Pan ^{1,2}*

¹ College of Computer Science and Technology, Zhejiang University
² State Key Lab of Brain-Machine Intelligence, Zhejiang University
³ MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University

Background

➤ The **brain-computer interfaces (BCIs)** aim to establish a direct linkage between neural activities and behavioral actions via neural decoders.

Sustaining long-term decoding performance in chronic implantation is challenging due to the nonstationary property of neural signals.

[1] WILLETT, Francis R., et al. High-performance brain-to-text communication via handwriting. Nature, 2021, 593.7858: 249-254.

[2] Sussillo D, Stavisky S D, Kao J C, et al. Making brain-machine interfaces robust to future neural variability. Nature communications, 2016, 7(1): 1-13.

Background

- ☐ Improving neural alignment in **few-trial scenarios** for real-world BCI deployment.
- Invalid assumptions on prior distributions (NoMAD [1]).
- ➤ Ustable training based on certain **objective functions** (Cycle-GAN [2]).

[1] KARPOWICZ, Brianna M., et al. Stabilizing brain-computer interfaces through alignment of latent dynamics. Nature Communications, 2025, 16.1: 1-17. [2] MA, Xuan, et al. Using adversarial networks to extend brain computer interface decoding accuracy over time. elife, 2023, 12: e84296.

Motivation

- ☐ Flow matching is suitable for neural adaptation in **few-trial scenarios**.
- > Prior Stationary distributions.
- Finding 1: Flow matching can learn stable neural representations with flexible distributions.
- > Ustable objective functions.

Finding 2: Flow-based models also enables rapid adaptation through **direct likelihood maximization**.

Method

- ☐ Proposed Flow-Based Distribution Alignment (FDA) based on flow matching.
- **Pre-train:** (1) Extracting c from x (2) Generating z(1) from z(0) guided by c
- Fine-tune: Aligning the conditional distribution of $z^{S}(1)$ and $z^{T}(1)$

Results

- ☐ Simulated results on Lorenz attractor.
- \triangleright Average R^2 at varying firing rates.

Table 3. Average R^2 scores(%) for recovered latent variables from synthetic spiking data at varying mean firing rates.

Mean Firing Rates	0.05	0.1	0.3
R^2	$95.43_{\pm 0.87}$	$95.68_{\pm 1.07}$	$95.24_{\pm 1.03}$

Visualization results.

Results

- Results on motor cortex datasets^[1].
- Comparative study to SOTA on cross-session decoding performance.

> Ablation study on alignment strategies and main components.

[1] MA, Xuan, et al. Using adversarial networks to extend brain computer interface decoding accuracy over time. elife, 2023, 12: e84296.

Thank you!

Puli Wang, Yu Qi, Yueming Wang, Gang Pan