

One Wave to Explain them All: A Unifying Perspective on Feature Attribution

Gabriel Kasmi, Amandine Brunetto, Thomas Fel, Jayneel Parekh

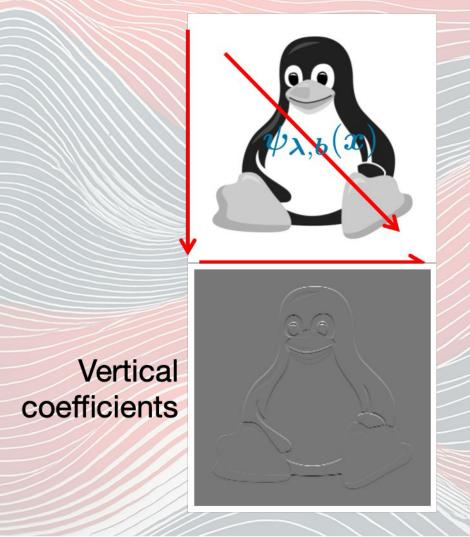
Explainable AI aims to improve the transparency of deep learning models.

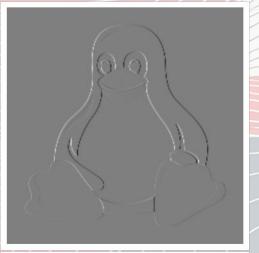
Feature attribution: **quantify the importance of a given input feature** in the model's prediction.

For **high-dimensional data** (images, sounds, volumes) **pixel-based heatmaps**.

Pixels: intuitive for images but not well-suited for other modalities.

Pixels (or superpixels) provide **only spatial information**, but do not capture information such as frequency content.





1-level dyadic transform

Approximation coefficients

Vertical coefficients

Horizontal coefficients

2-level dyadic transform

Approximation coefficients

Vertical coefficients

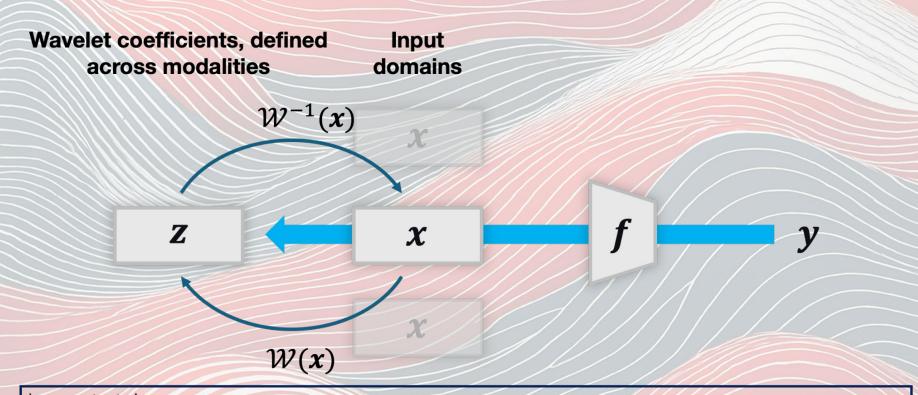
Horizontal coefficients

n-level dyadic decomposition

Approximation coefficients

Vertical coefficients

Horizontal coefficients



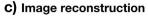
 $rac{\partial oldsymbol{f}_c(oldsymbol{x})}{\partial oldsymbol{z}}$

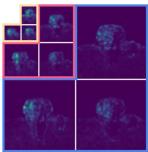
Computation of the gradients with respect to the wavelet coefficients of the input modality

More informative feature attribution

a) Original image

b) Wavelet heatmap



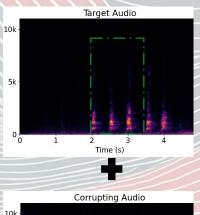


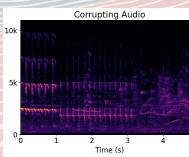
No details needed in the background High-resolution detail is essential in the center area

d) Heatmap and decomposition across scales

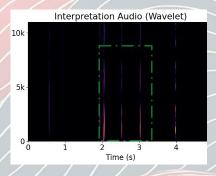


Overlap experiment: WAM eliminates the corrupting audio from the interpretation

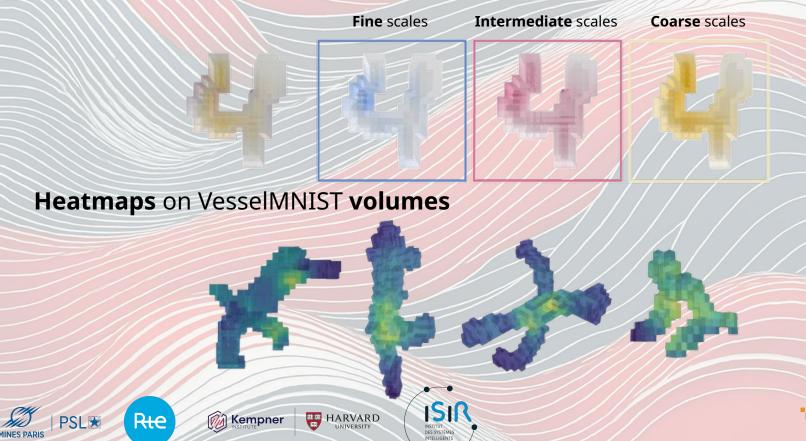








Decomposition of different scales on 3D MNIST examples



Quantitative evaluation

	Audio			Images			Volumes		
Model Dataset	ResNet ESC-50			EfficientNet ImageNet			3D Former AdrenalMNIST3D		
	Ins (†)	Del (↓)	Faith (†)	Ins(†)	Del (↓)	Faith (†)	Ins (†)	Del (↓)	Faith (†)
Integrated Gradients	0.267	0.047	0.264	0.113	0.113	0.000	0.666	0.743	-0.077
SmoothGrad	0.251	0.067	0.184	0.129	0.119	0.010	0.680	0.731	-0.051
GradCAM	0.274	0.201	0.072	0.364	0.303	0.061	0.689	0.744	-0.055
Saliency	0.220	0.154	0.066	0.148	0.140	0.008	0.751	0.742	0.009
WAM_{IG} (ours)	0.436	0.260	0.176	0.447	0.049	0.370	0.719	0.621	0.098
WAM_{SG} (ours)	0.449	0.252	0.197	0.419	0.097	0.350	<u>0.718</u>	0.648	0.070

WAM outperforms existing methods across a wide range of metrics, model topologies and datasets in the audio, images and volume cases.

Conclusions and perspectives

We **expand** gradient-based **feature attribution** to the **wavelet domain**, a **unified** and **more expressive domain**.

Future works could **expand our approach** to non smooth or non regular modalities such as **text** or **point cloud data**.

More broadly, our work discusses the **choice of the domain** over which **features** are defined.

Meet us at poster session 2!

