Determinant Estimation under Memory Constraints and Neural Scaling Laws

Siavash Ameli ^{1,2} Chris van der Heide ³ Liam Hodgkinson ⁴ Fred Roosta ⁵ Michael W. Mahoney ^{1,2,6}

¹Department of Statistics, UC Berkeley
²International Computer Science Institute
³Dept. of Electrical and Electronic Eng., University of Melbourne
⁴School of Mathematics and Statistics, University of Melbourne
⁵CIRES and School of Mathematics and Physics, University of Queensland
⁶Lawrence Berkeley National Laboratory

ICML 2025

OVERVIEW

Log-determinant is widely encountered in linear algebra and statistics:

- Gaussian process (kernel methods)
- Determinantal point process
- Volume form (Bayesian computation)

Challenges

- It is often **the most difficult term** to compute in these applications.
- **Memory-wall** (time complexity isn't the only bottleneck)

Outline

I. Large Matrices

- Neural Tangent Kernels
- Arithmetic Precision

II. MEMDET

- Compute exact log-det
- Out-of-core

III. FLODANCE

- Approximate log-det
- Utilize scale law

IIII. Results

- NTK matrices
- Matérn kernel

I. Large Matrices

Example of Extremely Challenging Matrices

Neural Tangent Kernel (NTK)

- Neural network $f_{\mathbf{Q}}: \mathcal{X} \to \mathbb{R}^d$
- \bullet θ : parameters
- $\mathbf{J}_{\theta}(f_{\theta}(x))$: Jacobian of f_{θ}
- NTK is Gramian of J_{θ} :

$$\kappa_{\boldsymbol{\theta}}(x, x') \coloneqq \mathbf{J}_{\boldsymbol{\theta}}(f_{\boldsymbol{\theta}}(x)) \mathbf{J}_{\boldsymbol{\theta}}(f_{\boldsymbol{\theta}}(x'))^{\mathsf{T}}$$

Compute time of NTK (using NVIDIA H100 GPU)

		Compute Time (hrs)		
Dataset	Model	float16	float32	float64
MNIST	${\bf Mobile Net}$	6	25	50
CIFAR-10	ResNet9	6	24	70
	ResNet18	14	63	65
	ResNet50	37	177	297
	ResNet101	107	442	1178

Challenges

Challenge I. Forming NTK

- Takes days/months to compute on H100 GPU
- Need large storage (from **Terabytes** to **Exabytes**)
- **Precision loss** when forming Gram matrix
- double precision to retain positive-definiteness

Challenge II. Computing LogDet

- Cubic complexity $\mathcal{O}(m^3)$
- NTK is nearly singular
- CIFAR-10: 10% of eigenvalues near zero
- Cannot load on memory

II. MEMDET

Memory-Constrained LogDet Computation

MEMDET

- Out-of-core algorithm
- Can process matrix of any scale
- Eliminates memory wall

Block decompositions:

• LU decomposition: generic matrices

$$\begin{aligned} \mathbf{M} &= \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_{22} \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{L}_{11} & \mathbf{0} \\ \mathbf{L}_{21} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} \\ \mathbf{0} & \mathbf{S} \end{bmatrix} \end{aligned}$$

- Repeat decomposition on block S.
- LDL: for symmetric matrices
- Cholesky: for symmetric PD matrices

MEMDET Algorithm

- Only four blocks A, B, C, S on memory
- Blue blocks are written to disk (scratch space)
- Efficient **order of processing** of blocks
- Figure: LU (left) and LDL/Cholesky decompositions (right).

III. FLODANCE

Scale Law

$$rac{\det\left(\mathbf{K}_{n}
ight)}{\det\left(\mathbf{K}_{n-1}
ight)}\sim n^{
u}$$

- n: num dataset
- d: num classes
- m = nd: matrix size

LEMMA

Let $f: \mathcal{X} \to \mathbb{R}^d$ be a zero-mean vector-valued m-dimensional Gaussian process with covariance kernel κ . For each $n \geq 2$, let

$$E(n) := \mathbb{E}[d^{-\frac{1}{2}}\left\|f(x_n)\right\|^2 \mid f(x_i) = 0$$
 denote the mean-squared error of fitting the f to the zero function using x_1, \dots, x_{n-1} . Then

$$\frac{\mathsf{pdet}(\mathbf{K}_n)}{\mathsf{pdet}(\mathbf{K}_{n-1})} \leq E(n)^d, \quad \forall n > 1,$$

with equality if d = 1.

- NTK of ResNet50 on CIFAR-10
- Number of classes: d = 10
- Dataset images: n = 50K
- Matrix size: m = 500K.

LogDet as Stochastic Process

Proposition

Let $L_n := \frac{1}{n} \operatorname{logdet}(\mathbf{K}_n)$. Then

$$\hat{L}_n pprox L_1 + \left(1 - rac{1}{n}
ight) c_0 -
u rac{\log(n!)}{n}$$

• Law of large numbers (LLN):

$$L_n = \hat{L}_n + o_p(1).$$

• Central limit theorem (CLT):

$$\frac{n}{\sqrt{n-1}}(L_n-\hat{L}_n)\overset{\mathcal{D}}{\to}\mathcal{N}(0,\sigma^2).$$

Algorithm:

- Fit \hat{L}_n on submatrices $n=1,\ldots,n_s\ll n$
- lacktriangle (Linear regression on parameters c_0, ν)
- Extrapolate to larger $n \gg n_s$

Assumptions:

- Stationary logarithmic process
- Ergodic process

IIII. RESULTS

ESTIMATING LOG-DET — NTK MATRIX

- Full CIFAR-10 data with all n = 50K images
- Matrix size m = 500,000 dense matrix, **double precision**, **2TB** size.
- Fit: on 10% of total matrix size (shaded gray region, yellow curve)
- Extrapolation: in much larger interval (red curve)
- Error compared to MEMDET: (blue curve right axis in each panel), 0.2% (left), 0.02% (right).

Comparison of Methods

M	ethod		Rel.	Est.	Wall
Name	Settings	TFLOPs	Error	Cost	Time
SLQ	l=100, s=104	5203	55%	\$83	1.8 days
MEMDET	$\mathrm{LDL}, n_b = 32$	41,667	0%	\$601	13.8 days
FLODANCE FLODANCE	$n_s = 500, \;\; q = 0 \ n_s = 5000, q = 4$	0.04 41.7	4% 0.02 %	\$0.04 \$4	1 min 1.5 hr

- Largest NTK formation and exact logdet computation to our knowledge
- ResNet50, full CIFAR-10 with all n = 50K images
- Matrix size m = 500,000 dense matrix, **double precision**, **2TB** size.
- MEMDET computes the **exact** log-determinant, serves as **benchmark**.
- Costs and wall time are based on an NVIDIA H100 GPU (\$2/hour).
- Wall time include NTK formation.

RESOURCES

ference	

Ameli, S., van der Heide, C., Hodgkinson, L., Roosta, F., Mahoney, M.W., (2025). Determinant Estimation under Memory Constraints and Neural Scaling Laws, *The 42nd International Conference on Machine Learning*.

Related Work

Ameli, S., van der Heide, C., Hodgkinson, L., Mahoney, M.W., (2025). Spectral Estimation with Free Decompression. arXiv: 2506.11994

Software

Package	Documentation	Install	Implements
detkit	ameli.github.io/detkit	pip install detkit	MEMDET FLODANCE
imate	ameli.github.io/imate	pip install imate	SLQ
freealg	ameli.github.io/freealg	pip install freealg	(Related work)