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OVERVIEW

Log-determinant is widely encountered in linear algebra and statistics:
@ Gaussian process (kernel methods)
@ Determinantal point process

@ Volume form (Bayesian computation)

Challenges
@ It is often the most difficult term to compute in these applications.

@ Memory-wall (time complexity isn’t the only bottleneck)

Outline
I. Large Matrices II. MEMDET II1. FLODANCE IITI. Results
@ Neural Tangent Kernels @ Compute exact log-det @ Approximate log-det @ NTK matrices
@ Arithmetic Precision @ Out-of-core @ Utilize scale law @ Matérn kernel
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I. LARGE MATRICES



ExampPLE oF EXTREMELY CHALLENGING MATRICES

Compute time of NTK (using NVIDIA H100 GPU)

Neural Tangent Kernel (NTK) Compute Time (hrs)

@ Neural network f : X — R? Dataset Model float16  float32  float64

@ 0O: parameters MNIST MobileNet 6 25 50

@ J,(f(x)): Jacobian of f,, CIFAR-10  ResNet9 6 24 70

@ NTK is Gramian of Jg: R 14 2 &

ResNet50 37 177 297
kg (@, x") = Jg (fo (1)) Io (o ()T ResNet101 107 442 1178
Challenges

Challenge 1. Forming NTK Challenge II. Computing LogDet

@ Takes days/months to compute on H100 GPU @ Cubic complexity O(ms)

@ Need large storage (from Terabytes to Exabytes) @ NTK is nearly singular

@ Precision loss when forming Gram matrix @ CIFAR-10: 10% of eigenvalues near zero

@ double precision to retain positive-definiteness @ Cannot load on memory
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II. MEMDET



MEeEMORY-CONSTRAINED LogDET COMPUTATION

1 k J ny 1 k i J ny

MEMDET
@ Out-of-core algorithm
@ Can process matrix of any scale

@ Eliminates memory wall

Block decompositions:
@ LU decomposition: generic matrices
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MEMDET Algorithm

o iti b
el dfeEETetie o dlrd @ Only four blocks A, B, C, S on memory

@ Blue blocks are written to disk (seratch space)
@ Efficient order of processing of blocks
@ Figure: LU (left) and LDL/Cholesky decompositions (right).

@ LDL: for symmetric matrices
@ Cholesky: for symmetric PD matrices
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ITI. FLODANCE



ScarLe Law

m = nd

ResNet50 — CIFAR-10

det (K,,) B 1042
det (anl) —
T
K, @ n: num dataset Q
K, @ d: num classes :j 1031 4
Ko @ m = nd: matrix size /\T:
&
=
R
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Letf : X — R? be a zero-mean vector-valued 0 L 0 n 0 v xRl

m-dimensional Gaussian process with
covariance kernel k. For each n > 2, let

E(n) = ]E[d_% IF@)I? | fx) =0 @ NTK of ResNet50 on CIFAR-10

denote the mean-squared error of fitting the f to @ Number of classes: d = 10
the zero function using xy, . . . ,x,_,. Then
pdet(K, ) . @ Dataset images: n = 50K
—— < E(n), Vn>1, L.
pdet(K,_;) @ Matrix size: m = 500K.

with equality if d = 1.
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LocDEeT As StocHAsTIC PROCESS

. ResNet50 — CIFAR-10
Let L, := Llogdet(K,). Then V=953
- 1 log(n!)
LymLy+ (1-2)¢— 222
n 1+ ( n) Co—v—,

cn—v
—_
fe=}
=

@ Law of large numbers (LLN): |
Ly, = Il 4 0,(1). Normal

det(Kn)/ det(Kn—1)

Rolling mean p(n) u(n) £ o(n) —— Empirical
107°
@ Central limit theorem (CLT): 0 i é é i 5 0% 9%
~ 4
" (L, —L,) B N(O,o?). n x10 PDF
n—1
v
Assumptions:
K det (K det (K _
Algorithm: @ Stochastic process: &)/ - (K1)
@ Fit L, on submatricesn = 1,...,n, < n . . . o
. . @ Stationary logarithmic process
@ (Linear regression on parameters c,, /)
@ Extrapolate to larger n >> n, @ Ergodic process
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I1II. REsuLTs



NG Log-DeET —

(b) ResNet50

6 a) ResNet9 6
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-
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n x10* n x10%
@ Full CIFAR-10 data with all » = 50K images
@ Matrix size m = 500,000 dense matrix, double precision, 2TB size.
@ Fit: on 10% of total matrix size (shaded gray region, yellow curve)
@ Extrapolation: in much larger interval (red curve)
@ Error compared to MEMDET: (blue curve right axis in each panel), 0.2% (left), 0.02% (right).
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ComPARISON OF METHODS

Method Rel.  Est. Wall
Name Settings TFLOPs Error Cost Time
SLQ [ =100,s =104 5203 55% $83 1.8 days
MEMDET LDL, n, = 32 41,667 0% $601 13.8 days
FLODANCE n,=500, ¢ =0 0.04 4% $0.04 1 min
FLODANCE n, =5000,q9g =4 41.7 0.02% $4 1.5 hr

Largest NTK formation and exact logdet computation to our knowledge
ResNet50, full CIFAR-10 with all » = 50K images

Matrix size m = 500,000 dense matrix, double precision, 2TB size.
MEMDET computes the exact log-determinant, serves as benchmark.
Costs and wall time are based on an NVIDIA H100 GPU ($2/hour).

Wall time include NTK formation.
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RESOURCES

Reference

Ameli, S., van der Heide, C., Hodgkinson, L., Roosta, F., Mahoney, M.W., (2025).
Determinant Estimation under Memory Constraints and Neural Scaling Laws,

The 42nd International Conference on Machine Learning.

Related Work

Ameli, S., van der Heide, C., Hodgkinson, L., Mahoney, M.W., (2025). Spectral

Estimation with Free Decompression. arXiv: 2506.11994

Software
Package Documentation Install Implements
detkit ameli.github.io/detkit pip install detkit MEMDET
FLODANCE
imate ameli.github.io/imate pip install imate SLQ
freealg  ameli.github.io/freealg pip install freealg (Related work)
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ameli.github.io/detkit
ameli.github.io/imate
ameli.github.io/freealg
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