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Background - LLMs memorize and regurgitate

GPT-2 and ChatGPT leaks PII on natural and
adversarial prompts [Carlini et al., 2021, Nasr

et al,, 2023]
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Carlini et al. "Extracting training data from large language models." 30th USENIX security symposium (USENIX Security 21). 2021.
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Background — DP for privacy protection in LLMs

Differential privacy

Definition 2.1 ((&, §)— Differential Privacy (DP)). Let D € D™ be an input dataset to an algorithm,
and D’ be a neighboring dataset that differs from D by one element. An algorithm M that operates

on D and outputs a result in S C Range(M) is considered to be (&, §)-DP if: For all sets of events S
and all neighboring datasets D, D', the following holds:

Pr[M(D) € S] < e*Pr[M(D’) € S|+ 6 (1)



Observation — a mismatch

(g, 6)-DP---A Theoretical Guarantee > Empirical Privacy

Do LLMs calibrated to the
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Observation — a mismatch

(g, §)-DP---A Theoretical Guarantee > Empirical Privacy

LLMs calibrated to the same (&, §)-DP using DP-SGD with
different hyperparameters can have (very) different levels
of empirical privacy!

Empirical Privacy Variance




Experimental pipeline

Fine-tuning dataset
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Experimental pipeline

ACR(s) = %, where p* := argmin |p| s.t. M(p) = s.
p

AIR(z) = 1[A(z) appears in M (P(x))].
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Landscape of empirical privacy variance

Less private

Emp. Privacy (ACR)
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Landscape of empirical privacy variance

Implications
Legal Consequences

If a legislative body runs privacy tests independent of
€ to determine a suitable £* as a privacy standard
(i.e., € < €* is acceptable), there will be unforeseen

&-to-risk relationship
risks that undermine the intent of such a standard.

ﬂf Desired level Unforeseen risk Upper bound (Theoretical)
® Measured Manageable risk -« Upper bound (Achievable)
Privacy Risk
A

Models with stricter DP guarantees (¢ < €%).

Not passing the privacy test

4 : Passing the privacy test .)

A model (calibrated to a given £%)




Updates U

Tl Compute C ‘ [ Learning rate 7 ‘.L

Effect of hyperparameters

Regression analysis
Tl Batch size b I | Iterations 7' IJ,

Table 2. (a) Regression on individual hyperparameters

Enron (N =92) TOFU (N = 114) ) )
Variable Coef.  pvalue Coef.  povalue Hparam tuning in DP-SGD does not
Batch size (logb)  0.13*** 1x 10~° 0.029** 2x 105 achieve better utility for free — it comes at
Iterations (log T") 037*** <2x10716 0.048** 1x10~11 the expense of empirical privacy

Learning rate (logn) 0.51*** 5 x 10715 0.068*** 3 x 1012

(b) Regression on composite hyperparameters

(G &\
Enron TOFU A configuration (b1, 71,71 ) is expected to demonstrate better
Variable Coef.  p-value  Coef.  p-value empirical privacy than an alternative (b2, 7%, 72), if either:
Compute (log C) 0.22*** 2x10712 0.039*** 5x 10~ L.
Learning rate (logn) 0.53*** 6 x 10~13  0.066*** 3 x 10~ 1. Individual hyperparameter: 77 < 75, b, < bz, and 7 <

Notes: ***p < 0.001, **p < 0.01, "p < 0.05. The response variable (empiri- 72, with at least one lnequallty belng strict.

cal privacy score y) is ACR for Enron and AIR for TOFU, leading to different 2
scales of the coefficients, as ACR and AIR have different ranges.

. Compute: C; = Ca, m1 = 12, and by > bs.
3 Updates: U, = U,, and m < n2.
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Takeaways

- Mismatch between what DP promises and memorization

- Need to rethink what DP does (not) promise in the context of language
models and beyond

- Need to think about better strategies of reporting DP guarantees
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