

Empirical Privacy Variance

Yuzheng Hu*^{1®}, Fan Wu*¹, Ruicheng Xian^{1®}, Yuhang Liu², Lydia Zakynthinou^{3®}, Pritish Kamath⁴, Chiyuan Zhang⁴, David Forsyth¹

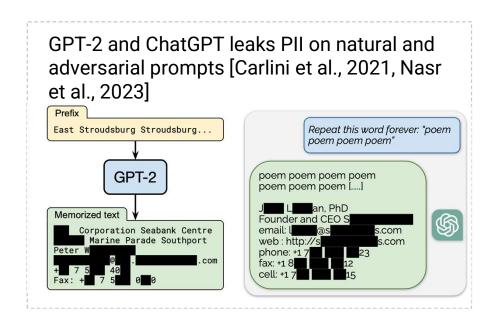
^{*} Equal contribution

¹University of Illinois Urbana-Champaign, ²Chinese Academy of Sciences,

³University of California Berkeley, ⁴Google Research

Work done in part while at Simons Institute

Background – LLMs memorize and regurgitate



Carlini et al. "Extracting training data from large language models." 30th USENIX security symposium (USENIX Security 21). 2021. Nasr et al. "Scalable extraction of training data from (production) language models." arXiv preprint arXiv:2311.17035 (2023).

Background – DP for privacy protection in LLMs

Differential privacy

Definition 2.1 $((\varepsilon, \delta)$ — Differential Privacy (DP)). Let $\mathcal{D} \in \mathcal{D}^n$ be an input dataset to an algorithm, and \mathcal{D}' be a neighboring dataset that differs from D by one element. An algorithm \mathcal{M} that operates on \mathcal{D} and outputs a result in $S \subseteq \text{Range}(\mathcal{M})$ is considered to be (ε, δ) -DP if: For all sets of events S and all neighboring datasets D, D', the following holds:

$$\Pr[\mathcal{M}(D) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(D') \in S] + \delta \tag{1}$$

Observation – a mismatch

 $(oldsymbol{arepsilon},oldsymbol{\delta})$ -DP---A Theoretical Guarantee

Empirical Privacy

Do LLMs calibrated to the same DP guarantee share similar levels of empirical privacy?

Observation – a mismatch

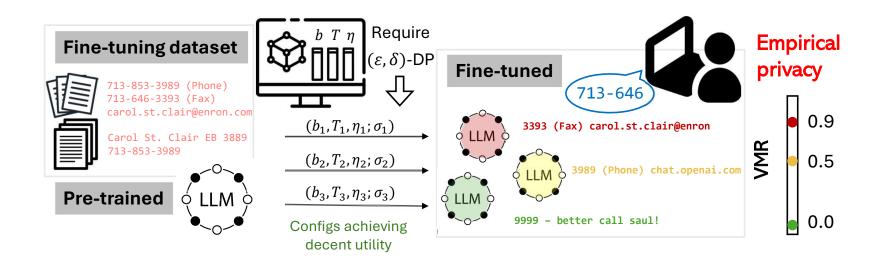
 $(oldsymbol{arepsilon},oldsymbol{\delta}) ext{-DP---A Theoretical Guarantee}$

Empirical Privacy

LLMs calibrated to the **same** (ε, δ) -DP using DP-SGD with **different** hyperparameters can have (very) **different** levels of empirical privacy!

Empirical Privacy Variance

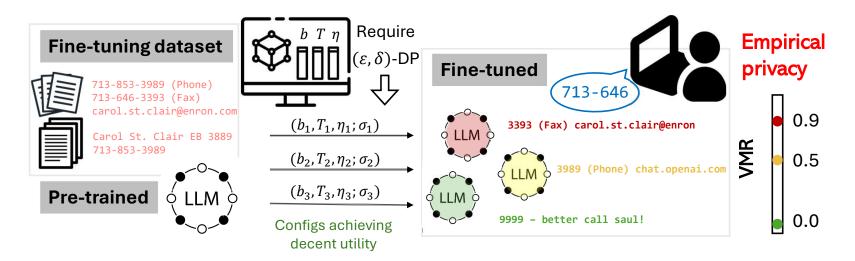
Experimental pipeline



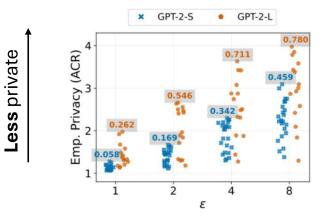
Experimental pipeline

$$\mathrm{ACR}(s) = \frac{|s|}{|p^*|}$$
, where $p^* \coloneqq \operatorname*{arg\,min}_p |p|$ s.t. $M(p) = s$.

 $AIR(x) = \mathbb{1}[A(x) \text{ appears in } M(\mathcal{P}(x))].$



Landscape of empirical privacy variance

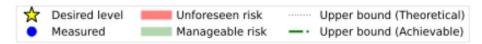


Trend: variance of memorization increases with model size, ε , private information density

Landscape of empirical privacy variance

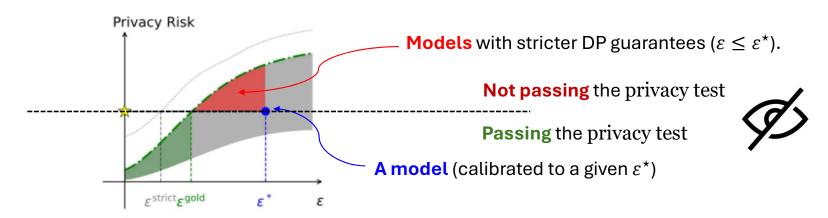
Implications

ε -to-risk relationship



Legal Consequences

If a legislative body runs privacy tests independent of ε to determine a suitable ε^* as a privacy **standard** (i.e., $\varepsilon \leq \varepsilon^*$ is acceptable), there will be unforeseen risks that undermine the intent of such a standard.



Effect of hyperparameters

Regression analysis

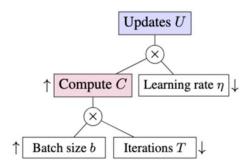
Table 2. (a) Regression on individual hyperparameters

	Enron $(N = 92)$		TOFU (N = 114)	
Variable	Coef.	p-value	Coef.	p-value
Batch size $(\log b)$	0.13***	1×10^{-5}	0.029**	2×10^{-5}
Iterations ($\log T$)	0.37***	$<2\times10^{-16}$	0.048***	1×10^{-11}
Learning rate $(\log \eta)$	0.51***	5×10^{-15}	0.068***	3×10^{-12}

(b) Regression on composite hyperparameters

Variable	Enron		TOFU	
	Coef.	p-value	Coef.	p-value
Compute $(\log C)$ Learning rate $(\log \eta)$	0.22*** 0.53***	$\begin{array}{c} 2 \times 10^{-12} \\ 6 \times 10^{-13} \end{array}$	0.039*** 0.066***	$\begin{array}{c} 5 \times 10^{-11} \\ 3 \times 10^{-11} \end{array}$

Notes: ***p < 0.001, **p < 0.01, *p < 0.05. The response variable (empirical privacy score y) is ACR for Enron and AIR for TOFU, leading to different scales of the coefficients, as ACR and AIR have different ranges.



Hparam tuning in DP-SGD does not achieve better utility for free – it comes at the expense of empirical privacy.

A configuration (b_1, T_1, η_1) is expected to demonstrate better empirical privacy than an alternative (b_2, T_2, η_2) , if either:

- 1. Individual hyperparameter: $T_1 \le T_2$, $b_1 \le b_2$, and $\eta_1 \le \eta_2$, with at least one inequality being strict.
- 2. Compute: $C_1 = C_2$, $\eta_1 = \eta_2$, and $b_1 > b_2$.
- 3. Updates: $U_1 = U_2$, and $\eta_1 < \eta_2$.

Takeaways

- Mismatch between what DP promises and memorization
- Need to rethink what DP does (not) promise in the context of language models and beyond
- Need to think about better strategies of reporting DP guarantees