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What is
Epsilon-VAE?

A visual autoencoder where the decoder is
replaced with a diffusion process,
achieving better reconstruction
performance than state-of-the-art VAEs.

A visual autoencoder (or tokenizer) is essential for generative
models: discrete tokens allow step-by-step conditional
generation in autoregressive models, while continuous
latents enable efficient learning in the denoising process of
diffusion models.
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An overview of Epsilon-VAE. We frame visual decoding as an iterative denoising problem by replacing the autoencoder decoder with a diffusion model, optimized using a score matching losses.
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An overview of Epsilon-VAE. We frame visual decoding as an iterative denoising problem by replacing the autoencoder decoder with a diffusion model, optimized using a score matching losses. During
inference, images are reconstructed (or generated) from encoded (or sampled) latents through an iterative denoising process.



Key problems & design
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An overview of Epsilon-VAE. We frame visual decoding as an iterative denoising problem by replacing the autoencoder decoder with a diffusion model, optimized using a combination of score,
perception, and trajectory matching losses. During inference, images are reconstructed (or generated) from encoded (or sampled) latents through an iterative denoising process. The number of
sampling steps N can be flexibly adjusted within small NFE regimes (from 1 to 3).



Loss functions

Perceptual matching

» We compute the LPIPS loss between reconstruction estimated by the
model at time t (using the simple reversing step) the target real image.

Estimated x_O

LPIPS loss
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Denoising trajectory matching

» We adapt the standard adversarial loss to enforce trajectory consistency
from x_t to (estimated) x_O rather than solely on estimated x_O.

Noisy input x_t Estimated x_O

\

‘l Adversarial loss
I conditioned on t
1

Noisy input x_t (real or fake?)
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Noise and time scheduling

Training

* We adopt the rectified flow parameterization.

» Noise scheduling can also be adjusted by scaling the intermediate states
x_t with a constant fact, which shifts the signal-to-noise ratio downward.
We scale x_t by 0.6 when we reconstruct 128 x 128 images, which makes
training more challenging over time while preserving the shape of the
trajectory (Chen, 2023).

» We sample t from a logit-normal distribution, which emphasizes
intermediate timesteps (Esser et al., 2024).

33 = mp(t;m=0.0,5=0.5)
my(t; m=0.0,5=1.0)
Mp(t;m=0.5,5=1.0)
me(t; m= —0.5,5=1.0)



https://arxiv.org/abs/2301.10972
https://arxiv.org/abs/2403.03206

Noise and time scheduling

Training Inference
* Noise scheduling can also be adjusted by scaling the intermediate states + During sampling, we apply a reversed logarithm mapping, resulting in
x_t with a constant fact, which shifts the signal-to-noise ratio downward. denser sampling steps early in the inference process.

We scale x_t by 0.6 on reconstructing 128 x 128 images, which makes
training more challenging over time while preserving the shape of the
trajectory (Chen, 2023)

* We adopt the rectified flow parameterization. L-TTT ~ L-TT T ~. L-"TTT= ~. L-"TTT= ~

+ We sample t from a logit-normal distribution, which emphasizes " " \x \X
intermediate timesteps (Esser et al., 2024).

35

my(t; m=0.0,5=0.5)
I ms(t; m=0.0,s=1.0)
- Ll Mn(t; m=0.5,5 = 1.0)
e my(t;m= -0.5,s=1.0)

. Reversed logarithm sampling



https://arxiv.org/abs/2301.10972
https://arxiv.org/abs/2403.03206

Evaluation: Reconstruction quality

ImageNet reconstruction results (rFID) at different resolutions using VAEs trained at 128 x 128 under Epsilon-VAE-SD setup. * denotes
training at 128 x 128 followed by fine-tuning at a higher resolution.

Method IN128 x 128 rFID  IN 256 x 256 rFID IN 512 x 512 rFID IN 256 x 256 rFID *
SD-VAE 4.54 1.21 0.91 0.86
LiteVAE 4.40 0.97 - 0.73
Epsilon-VAE (B) 1.94 0.65 0.61 0.52
Epsilon-VAE (M) 1.58 0.55 0.53 0.47
Epsilon-VAE (L) 1.47 0.52 0.41 0.45
Epsilon-VAE (XL) 1.34 0.49 0.39 0.43
Epsilon-VAE (H) 1.00 0.44 0.35 0.38

Key observations

- Epsilon-VAE effectively generalizes to higher

resolutions, consistently preserving its
performance advantage over other VAEs.

 Furthermore, we find that fine-tuning models at

the target (higher) resolution leads to
improvement at it.

» We hence utilize this multi-stage training

strategy in the following experiments when the
target resolution is larger than 128 x 128.



Evaluation: Reconstruction quality

Comparisons with state-of-the-art image autoencoders under Epsilon-VAE-SD setup. All results are computed on 256 x 256 ImageNet 50K

validation set and COCO-2017 5K validation set. Epsilon-VAE-SD (M) achieves better reconstruction quality while having similar parameters (49M) in

the decoder with other VAEs. Epsilon-VAE-SD (H) has 355M decoder parameters.

Downsample Method Latent dim. ImageNet rFID COCO-2017 rFID

VQGAN 256 (discrete) 5.74 3.69

LlamaGen 8 (discrete) 4.63 2.69

16 x 16 SD-VAE 4 4.78 2.78
Epsilon-VAE (M) 4 4.42 2.41

Epsilon-VAE (H) 4 4.29 2.37

VQGAN 4 (discrete) 3.90 2.06

SD-VAE 4 2.79 2.02

8x8 LiteVAE 4 2.60 1.92
Epsilon-VAE (M) 4 2.38 1.82

Epsilon-VAE (H) 4 2.31 1.78

Key observations

- Epsilon-VAE outperforms state-of-the-art

VAEs when the decoder sizes are comparable,
and its performance can be further improved
by scaling up the decoder.



Evaluation: Ablation studies

Ablation study on key design choices for the Epsilon-VAE diffusion decoder under Epsilon-VAE-lite setup. A systematic evaluation of the
proposed architecture [A], objectives [O], and noise & time scheduling [S]. Each row progressively modifies or builds upon the baseline

decoder, showing improvements in performance.
Ablation
Baseline: DDPM-based diffusion decoder
[O] (a) Diffusion — Rectified flow parameterization
[S] (b) Uniform — Logit-normal time step sampling during training
[A] (c) DDPM UNet — ADM UNet
[O] (d) Perceptual matching
[O] (e) Adversarial denoising trajectory matching
[S] () Scale diffusion inputs by 0.6

[S] (g) Uniform — Reversed logarithm time spacing during inference
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Key observations

+ In (a), Transitioning from standard diffusion to

rectified flow (Liu et al., 2023) straightens the
optimization path, resulting in significant gains in
rFID and NFE.

* In(d), LPIPS loss is applied to match

reconstructions with real images, leading to
remarkable improvements.

* In (e), adversarial trajectory matching loss improve

model understanding of the underlying
optimization trajectory, significantly enhancing
rFID scores and NFE.



Key observations

+ We find that Epsilon-VAE produces more
accurate visual details than SD-VAE in the

highlighted regions with text or human
face.

Image reconstruction results under the SD-VAE configuration (Rombach et al., 2022) at the resolution of 512 x 512.



Evaluation: Conditional image generation

Key observations

Benchmarking class-conditional image generation on ImageNet 256 x 256 under Epsilon-VAE-SD setup. We use the DiT-XL/2 architecture
(Esser et al., 2024) for latent diffusion models, and we do not apply classifier-free guidance (Ho & Salimans, 2022). - Epsilon-VAE consistently outperforms other
VAEs across different dowmsample factors.

Downsample Method Throughput (image/sec) FID
 Epsilon-VAE achieves favorable generation
SD-VAE 1220 14.59 quality while using only 25% of the token
length typically required by SD-VAE.

16 X 16 Epsilon-VAE (M) 192 =~ N 10.68
\ « This token length reduction significantly
. \ accelerates latent diffusion model generation,
Epsilon-VAE (H) 180 \ .12 leading to 2.3x higher inference throughput
1 while maintaining competitive generation
Asym-VAE 502 10.85 i
y '| 2.3x quality.
Omni-VAE 480 ,' 12.25
/
8x8 SD-VAE 522 & 11.63
Epsilon-VAE (M) 491 9.39

Epsilon-VAE (H) 477 8.85
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