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What is
Epsilon-VAE? A visual autoencoder where the decoder is 

replaced with a diffusion process, 
achieving better reconstruction 
performance than state-of-the-art VAEs.

A visual autoencoder (or tokenizer) is essential for generative 
models: discrete tokens allow step-by-step conditional 
generation in autoregressive models, while continuous 
latents enable efficient learning in the denoising process of 
diffusion models.



Key problems & design

Input Image

Encoder

Latents

Resize & Concat

Diffusion
Model

Denoising Target
Score Matching

Training Pipeline

An overview of Epsilon-VAE. We frame visual decoding as an iterative denoising problem by replacing the autoencoder decoder with a diffusion model, optimized using a score matching losses.



Key problems & design

Inference Pipeline

Input Image

Encoder

Latents

Resize & Concat

Diffusion
Model

Denoising Target
Score Matching

Diffusion
Model

Resize & Concat Step #1 Step #2 Step #N

Training Pipeline

Latents

An overview of Epsilon-VAE. We frame visual decoding as an iterative denoising problem by replacing the autoencoder decoder with a diffusion model, optimized using a score matching losses. During 
inference, images are reconstructed (or generated) from encoded (or sampled) latents through an iterative denoising process.
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An overview of Epsilon-VAE. We frame visual decoding as an iterative denoising problem by replacing the autoencoder decoder with a diffusion model, optimized using a combination of score, 
perception, and trajectory matching losses. During inference, images are reconstructed (or generated) from encoded (or sampled) latents through an iterative denoising process. The number of 
sampling steps N can be flexibly adjusted within small NFE regimes (from 1 to 3).

Synergies with 
traditional VAE losses

Only 3 steps in Epsilon-VAE



Loss functions

Perceptual matching

• We compute the LPIPS loss between reconstruction estimated by the 
model at time t (using the simple reversing step) the target real image.
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Loss functions

Perceptual matching

• We compute the LPIPS loss between reconstruction estimated by the 
model at time t (using the simple reversing step) the target real image.

Denoising trajectory matching

• We adapt the standard adversarial loss to enforce trajectory consistency 
from x_t to (estimated) x_0 rather than solely on estimated x_0.
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Noise and time scheduling

Training

• We adopt the rectified flow parameterization.
• Noise scheduling can also be adjusted by scaling the intermediate states 

x_t with a constant fact, which shifts the signal-to-noise ratio downward. 
We scale x_t by 0.6 when we reconstruct 128 x 128 images, which makes 
training more challenging over time while preserving the shape of the 
trajectory (Chen, 2023).

• We sample t from a logit-normal distribution, which emphasizes 
intermediate timesteps (Esser et al., 2024).

https://arxiv.org/abs/2301.10972
https://arxiv.org/abs/2403.03206


Noise and time scheduling

Training

• Noise scheduling can also be adjusted by scaling the intermediate states 
x_t with a constant fact, which shifts the signal-to-noise ratio downward. 
We scale x_t by 0.6 on reconstructing 128 x 128 images, which makes 
training more challenging over time while preserving the shape of the 
trajectory (Chen, 2023)

• We adopt the rectified flow parameterization.
• We sample t from a logit-normal distribution, which emphasizes 

intermediate timesteps (Esser et al., 2024).

Inference

• During sampling, we apply a reversed logarithm mapping, resulting in 
denser sampling steps early in the inference process.

Uniform sampling

Reversed logarithm sampling

https://arxiv.org/abs/2301.10972
https://arxiv.org/abs/2403.03206


Evaluation: Reconstruction quality

Method IN 128 x 128 rFID IN 256 x 256 rFID IN 512 x 512 rFID IN 256 x 256 rFID *

SD-VAE 4.54 1.21 0.91 0.86

LiteVAE 4.40 0.97 - 0.73

Epsilon-VAE (B) 1.94 0.65 0.61 0.52

Epsilon-VAE (M) 1.58 0.55 0.53 0.47

Epsilon-VAE (L) 1.47 0.52 0.41 0.45

Epsilon-VAE (XL) 1.34 0.49 0.39 0.43

Epsilon-VAE (H) 1.00 0.44 0.35 0.38

ImageNet reconstruction results (rFID) at different resolutions using VAEs trained at 128 × 128 under Epsilon-VAE-SD setup. * denotes 
training at 128 × 128 followed by fine-tuning at a higher resolution.

Key observations

• Epsilon-VAE effectively generalizes to higher 
resolutions, consistently preserving its 
performance advantage over other VAEs.

• Furthermore, we find that fine-tuning models at 
the target (higher) resolution leads to 
improvement at it.

• We hence utilize this multi-stage training 
strategy in the following experiments when the 
target resolution is larger than 128 × 128.



Evaluation: Reconstruction quality

Downsample Method Latent dim. ImageNet rFID COCO-2017 rFID

16 x 16

VQGAN 256 (discrete) 5.74 3.69

LlamaGen 8 (discrete) 4.63 2.69

SD-VAE 4 4.78 2.78

Epsilon-VAE (M) 4 4.42 2.41

Epsilon-VAE (H) 4 4.29 2.37

8 x 8

VQGAN 4 (discrete) 3.90 2.06

SD-VAE 4 2.79 2.02

LiteVAE 4 2.60 1.92

Epsilon-VAE (M) 4 2.38 1.82

Epsilon-VAE (H) 4 2.31 1.78

Comparisons with state-of-the-art image autoencoders under Epsilon-VAE-SD setup. All results are computed on 256 × 256 ImageNet 50K 
validation set and COCO-2017 5K validation set. Epsilon-VAE-SD (M) achieves better reconstruction quality while having similar parameters (49M) in 
the decoder with other VAEs. Epsilon-VAE-SD (H) has 355M decoder parameters.

Key observations

• Epsilon-VAE outperforms state-of-the-art 
VAEs when the decoder sizes are comparable, 
and its performance can be further improved 
by scaling up the decoder.



Evaluation: Ablation studies

Ablation NFE rFID

Baseline: DDPM-based diffusion decoder 1000 28.22

[O] (a) Diffusion → Rectified flow parameterization 100 24.11

[S] (b) Uniform → Logit-normal time step sampling during training 50 23.44

[A] (c) DDPM UNet → ADM UNet 50 22.04

[O] (d) Perceptual matching 10 11.76

[O] (e) Adversarial denoising trajectory matching 5 8.24

[S] (f) Scale diffusion inputs by 0.6 5 7.08

[S] (g) Uniform → Reversed logarithm time spacing during inference 3 6.24

Ablation study on key design choices for the Epsilon-VAE diffusion decoder under Epsilon-VAE-lite setup. A systematic evaluation of the 
proposed architecture [A], objectives [O], and noise & time scheduling [S]. Each row progressively modifies or builds upon the baseline 
decoder, showing improvements in performance.

Key observations

• In (a), Transitioning from standard diffusion to 
rectified flow (Liu et al., 2023) straightens the 
optimization path, resulting in significant gains in 
rFID and NFE.

• In (d), LPIPS loss is applied to match 
reconstructions with real images, leading to 
remarkable improvements.

• In (e), adversarial trajectory matching loss improve 
model understanding of the underlying 
optimization trajectory, significantly enhancing 
rFID scores and NFE.



Key observations

• We find that Epsilon-VAE produces more 
accurate visual details than SD-VAE in the 
highlighted regions with text or human 
face.

Image reconstruction results under the SD-VAE configuration (Rombach et al., 2022) at the resolution of 512 × 512. 



Evaluation: Conditional image generation

Downsample Method Throughput (image/sec) FID

16 x 16

SD-VAE 1220 14.59

Epsilon-VAE (M) 1192 10.68

Epsilon-VAE (H) 1180 9.72

8 x 8

Asym-VAE 502 10.85

Omni-VAE 480 12.25

SD-VAE 522 11.63

Epsilon-VAE (M) 491 9.39

Epsilon-VAE (H) 477 8.85

Benchmarking class-conditional image generation on ImageNet 256 × 256 under Epsilon-VAE-SD setup. We use the DiT-XL/2 architecture 
(Esser et al., 2024) for latent diffusion models, and we do not apply classifier-free guidance (Ho & Salimans, 2022).

Key observations

• Epsilon-VAE consistently outperforms other 
VAEs across different dowmsample factors.

• Epsilon-VAE achieves favorable generation 
quality while using only 25% of the token 
length typically required by SD-VAE.

• This token length reduction significantly 
accelerates latent diffusion model generation, 
leading to 2.3x higher inference throughput 
while maintaining competitive generation 
quality.2.3x
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