

Epsilon-VAE: Denoising as Visual Decoding

Long Zhao, Sanghyun Woo, Ziyu Wan, Yandong Li, Han Zhang, Boqing Gong, Hartwig Adam, Xuhui Jia, Ting Liu

Google DeepMind

What is Epsilon-VAE?

A visual **autoencoder** where the decoder is replaced with a **diffusion process**, achieving better reconstruction performance than state-of-the-art VAEs.

A visual autoencoder (or tokenizer) is essential for generative models: discrete tokens allow step-by-step conditional generation in autoregressive models, while continuous latents enable efficient learning in the denoising process of diffusion models.

Key problems & design

Key problems & design

An overview of Epsilon-VAE. We frame visual decoding as an iterative denoising problem by replacing the autoencoder decoder with a diffusion model, optimized using a score matching losses. During inference, images are reconstructed (or generated) from encoded (or sampled) latents through an iterative denoising process.

Key problems & design

An overview of Epsilon-VAE. We frame visual decoding as an iterative denoising problem by replacing the autoencoder decoder with a diffusion model, optimized using a combination of score, perception, and trajectory matching losses. During inference, images are reconstructed (or generated) from encoded (or sampled) latents through an iterative denoising process. The number of sampling steps N can be flexibly adjusted within small NFE regimes (from 1 to 3).

Loss functions

Perceptual matching

• We compute the LPIPS loss between reconstruction estimated by the model at time t (using the simple reversing step) the target real image.

Estimated x_0 LPIPS loss Input Image

Loss functions

Perceptual matching

 We compute the LPIPS loss between reconstruction estimated by the model at time t (using the simple reversing step) the target real image.

Denoising trajectory matching

 We adapt the standard adversarial loss to enforce trajectory consistency from x_t to (estimated) x_0 rather than solely on estimated x_0.

Noise and time scheduling

Training

- We adopt the **rectified flow** parameterization.
- Noise scheduling can also be adjusted by scaling the intermediate states x_t with a constant fact, which shifts the signal-to-noise ratio downward. We scale x_t by 0.6 when we reconstruct 128 x 128 images, which makes training more challenging over time while preserving the shape of the trajectory (Chen. 2023).
- We sample t from a **logit-normal distribution**, which emphasizes intermediate timesteps (<u>Esser et al.</u>, 2024).

Noise and time scheduling

Training

- Noise scheduling can also be adjusted by scaling the intermediate states x_t with a constant fact, which shifts the signal-to-noise ratio downward. We scale x_t by 0.6 on reconstructing 128 x 128 images, which makes training more challenging over time while preserving the shape of the trajectory (Chen. 2023)
- We adopt the **rectified flow** parameterization.
- We sample t from a **logit-normal distribution**, which emphasizes intermediate timesteps (<u>Esser et al.</u>, 2024).

Inference

 During sampling, we apply a reversed logarithm mapping, resulting in denser sampling steps early in the inference process.

Evaluation: Reconstruction quality

ImageNet reconstruction results (rFID) at different resolutions using VAEs trained at 128 × 128 under **Epsilon-VAE-SD** setup. * denotes training at 128 × 128 followed by fine-tuning at a higher resolution.

Method	IN 128 x 128 rFID	IN 256 x 256 rFID	IN 512 x 512 rFID	IN 256 x 256 rFID *
SD-VAE	4.54	1.21	0.91	0.86
LiteVAE	4.40	0.97	-	0.73
Epsilon-VAE (B)	1.94	0.65	0.61	0.52
Epsilon-VAE (M)	1.58	0.55	0.53	0.47
Epsilon-VAE (L)	1.47	0.52	0.41	0.45
Epsilon-VAE (XL)	1.34	0.49	0.39	0.43
Epsilon-VAE (H)	1.00	0.44	0.35	0.38

Key observations

- Epsilon-VAE effectively generalizes to higher resolutions, consistently preserving its performance advantage over other VAEs.
- Furthermore, we find that fine-tuning models at the target (higher) resolution leads to improvement at it.
- We hence utilize this multi-stage training strategy in the following experiments when the target resolution is larger than 128 x 128.

Evaluation: Reconstruction quality

Comparisons with state-of-the-art image autoencoders under **Epsilon-VAE-SD** setup. All results are computed on 256×256 ImageNet 50K validation set and COCO-2017 5K validation set. Epsilon-VAE-SD (M) achieves better reconstruction quality while having similar parameters (49M) in the decoder with other VAEs. Epsilon-VAE-SD (H) has 355M decoder parameters.

Downsample	Method	Latent dim.	ImageNet rFID	COCO-2017 rFID
16 x 16	VQGAN	256 (discrete)	5.74	3.69
	LlamaGen	8 (discrete)	4.63	2.69
	SD-VAE	4	4.78	2.78
	Epsilon-VAE (M)	4	4.42	2.41
	Epsilon-VAE (H)	4	4.29	2.37
8 x 8	VQGAN	4 (discrete)	3.90	2.06
	SD-VAE	4	2.79	2.02
	LiteVAE	4	2.60	1.92
	Epsilon-VAE (M)	4	2.38	1.82
	Epsilon-VAE (H)	4	2.31	1.78

Key observations

Epsilon-VAE outperforms state-of-the-art VAEs when the decoder sizes are comparable, and its performance can be further improved by scaling up the decoder.

Evaluation: Ablation studies

Ablation study on key design choices for the Epsilon-VAE diffusion decoder under **Epsilon-VAE-lite** setup. A systematic evaluation of the proposed architecture [A], objectives [O], and noise & time scheduling [S]. Each row progressively modifies or builds upon the baseline decoder, showing improvements in performance.

Ablation		rFID
Baseline: DDPM-based diffusion decoder		28.22
[O] (a) Diffusion → Rectified flow parameterization		24.11
[S] (b) Uniform → Logit-normal time step sampling during training		23.44
[A] (c) DDPM UNet → ADM UNet		22.04
[O] (d) Perceptual matching		11.76
[O] (e) Adversarial denoising trajectory matching		8.24
[S] (f) Scale diffusion inputs by 0.6		7.08
[S] (g) Uniform → Reversed logarithm time spacing during inference	3	6.24

Key observations

- In (a), Transitioning from standard diffusion to rectified flow (Liu et al., 2023) straightens the optimization path, resulting in significant gains in rFID and NFE.
- In (d), LPIPS loss is applied to match reconstructions with real images, leading to remarkable improvements.
- In (e), adversarial trajectory matching loss improve model understanding of the underlying optimization trajectory, significantly enhancing rFID scores and NFE.

Key observations

 We find that Epsilon-VAE produces more accurate visual details than SD-VAE in the highlighted regions with text or human face.

Image reconstruction results under the SD-VAE configuration (Rombach et al., 2022) at the resolution of 512 × 512.

Evaluation: Conditional image generation

Benchmarking class-conditional image generation on ImageNet 256 × 256 under **Epsilon-VAE-SD** setup. We use the DiT-XL/2 architecture (Esser et al., 2024) for latent diffusion models, and we do not apply classifier-free guidance (Ho & Salimans, 2022).

Downsample	Method	Throughput (image/sec)	FID
16 x 16	SD-VAE	1220	14.59
	Epsilon-VAE (M)	1192	10.68
	Epsilon-VAE (H)	1180	9.72
8 x 8	Asym-VAE	502 2.3 x	10.85
	Omni-VAE	480	12.25
	SD-VAE	522	11.63
	Epsilon-VAE (M)	491	9.39
	Epsilon-VAE (H)	477	8.85

Key observations

- Epsilon-VAE consistently outperforms other VAEs across different downsample factors.
- **Epsilon-VAE** achieves favorable generation quality while using only 25% of the token length typically required by **SD-VAE**.
- This token length reduction significantly accelerates latent diffusion model generation, leading to 2.3x higher inference throughput while maintaining competitive generation quality.

Thank you.