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3D Scene Decomposition

Descriptor Extraction Relevance Aggregation

LaGa first assign an affinity feature to each
3D Gaussian. During training, it renders the
feature map Fj

Quantifying View-Dependency

For each 3D object, LaGa uses CLIP to
extract its multi-view semantics:

After assigning a set of descriptors to each
3D object, LaGa adjust the importance of

Results on the 3D-OVS dataset
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