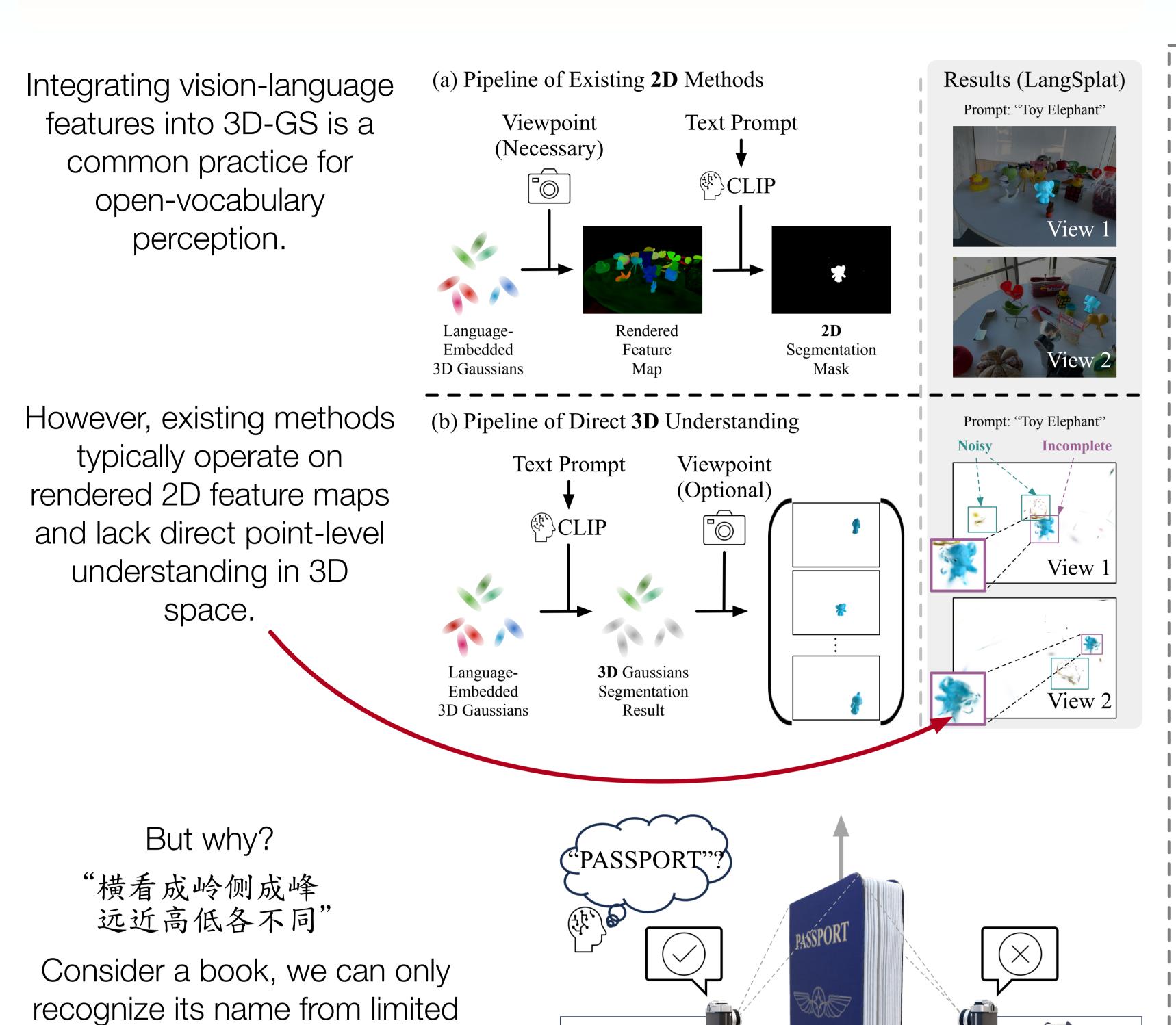
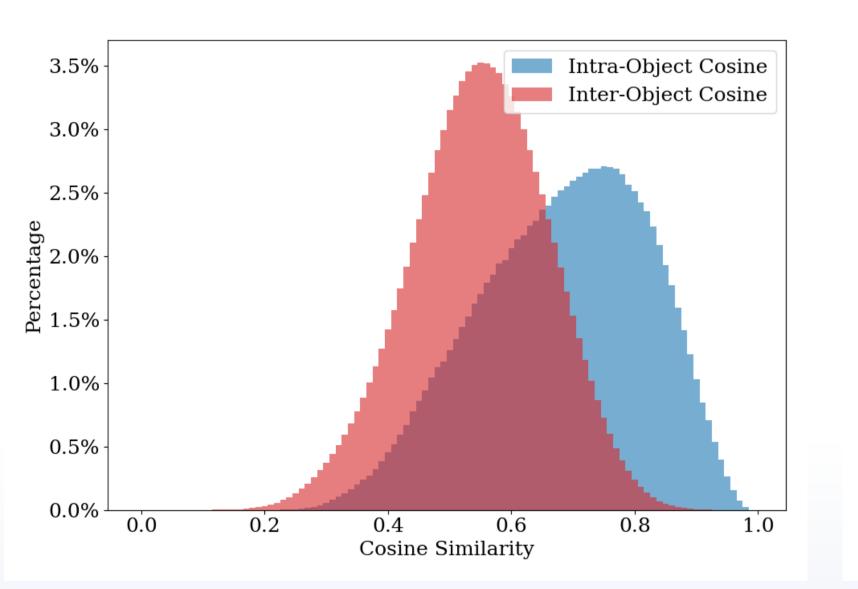


Tackling View-Dependent Semantics in 3D Language Gaussian Splatting

Jiazhong Cen¹, Xudong Zhou¹, Jiemin Fang², Changsong Wen¹, Lingxi Xie², Xiaopeng Zhang², Wei Shen¹, Qi Tian²




¹MoE Key Lab of Artificial Intelligence, Al Institute, Shanghai Jiao Tong University ²Huawei Technologies Co., Ltd.

Introduction

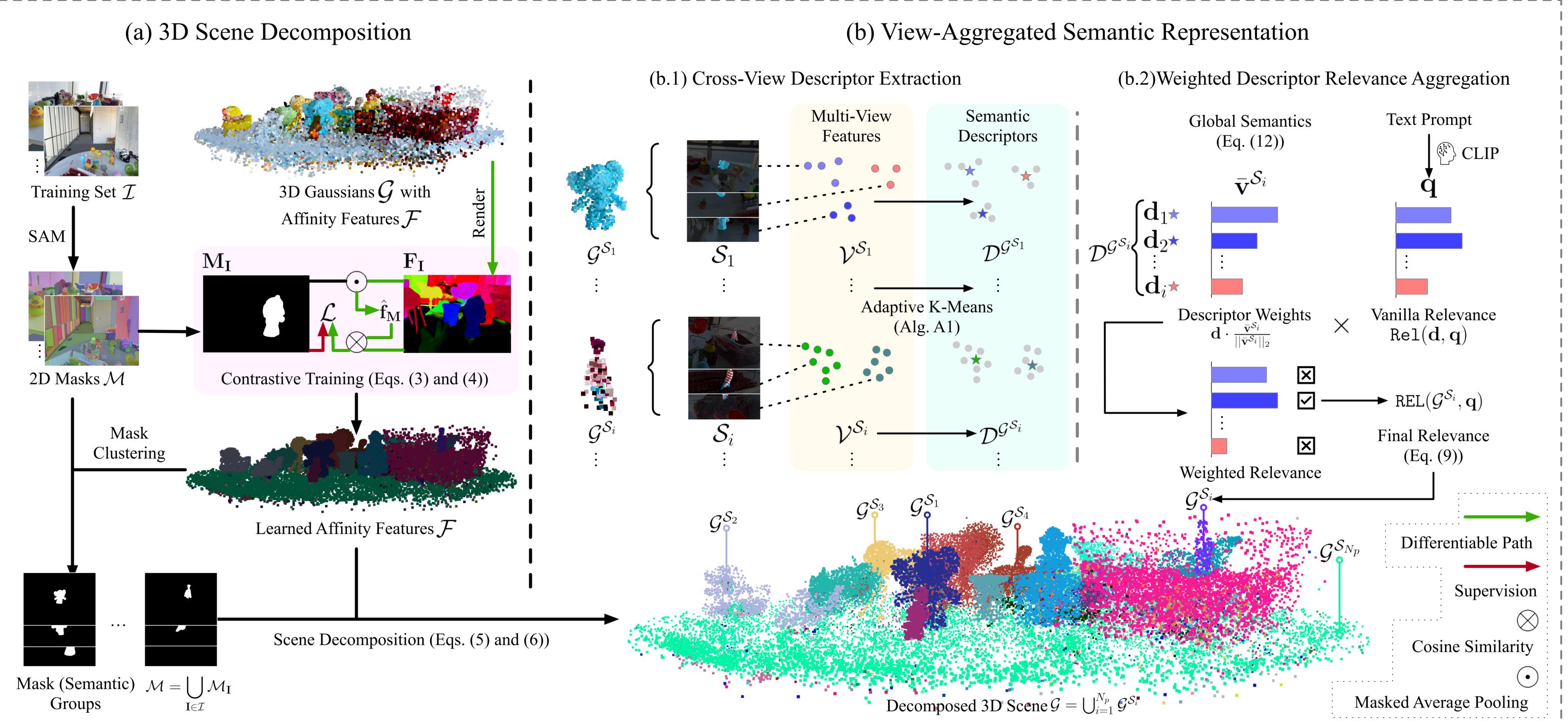
Existing methods ignore this characteristic, simply adopting 3D-GS to fit multiview 2D semantic features! Thus leading to sub-optimal results.

Quantifying View-Dependency

viewpoints, indicating its

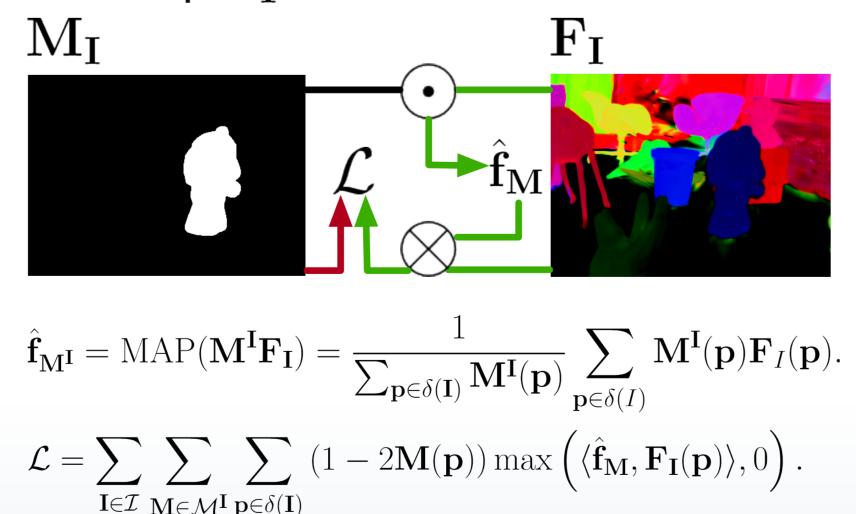
semantics is view-dependent.

Cosine similarity of multi-view semantic features within the same object and across different objects: A substantial overlap between the inter- and intra-object distributions, suggesting inconsistent multi-view semantics of each object.


Using single view semantics to

retrieve the corresponding object:

Low / (Low + High)


More than a half of semantic features can not completely retrieve its corresponding object.

Methodology

3D Scene Decomposition

LaGa first assign an affinity feature to each 3D Gaussian. During training, it renders the feature map \mathbf{F}_{T}

LaGa conducts clustering on the learned mask prototypes $\hat{\mathbf{f}}_{\mathbf{M}}$. The masks of each 3D object will be grouped into a same cluster S_i

To decompose the 3D scene, LaGa derives classifier t^{S_i} from the mask clusters. The 3D Gaussian with f_g belongs to the i^* -th object.

$$\mathbf{t}^{S_i} = \frac{1}{|S_i|} \sum_{\mathbf{M} \in S_i} \hat{\mathbf{f}}_{\mathbf{M}}. \qquad i^* = \arg\max_i \langle \mathbf{f}_{\mathbf{g}}, \mathbf{t}^{S_i} \rangle.$$

Cross-View Descriptor Extraction

For each 3D object, LaGa uses CLIP to extract its multi-view semantics:

$$\mathcal{V}^{\mathcal{S}_i} = \left\{ \mathbf{v^M} \mid \mathbf{M} \in \mathcal{S}_i \right\}.$$

$$\mathcal{G}^{\mathcal{S}_1}$$

$$\mathcal{S}_1$$

$$\mathcal{S}_2$$

$$\mathcal{S}_1$$

$$\mathcal{S}_1$$

$$\mathcal{S}_2$$

$$\mathcal{S}_3$$

$$\mathcal{S}_4$$

$$\mathcal{S}_1$$

$$\mathcal{S}_3$$

$$\mathcal{S}_4$$

$$\mathcal{S}_4$$

$$\mathcal{S}_4$$

$$\mathcal{S}_5$$

$$\mathcal{S}_7$$

The multi-view semantics of different 3D objects exhibit varying levels of complexity.

To account for this, LaGa employs an adaptive K-Means algorithm (Alg. A1) on each object's semantic features to adaptively extract a set of descriptors:

$$\mathcal{D}^{\mathcal{G}^{\mathcal{S}_i}} = \left\{ \mathbf{d}_i \in \mathbb{R}^{C'} \,\middle|\, i \in \left\{ 1, \dots, N^{\mathcal{G}^{\mathcal{S}_i}} \right\} \right\}.$$

Note: C denotes the number of channels of affinity features and C' for the CLIP semantic features.

Weighted Descriptor Relevance Aggregation

After assigning a set of descriptors to each 3D object, LaGa adjust the importance of descriptors according to two metrics:

1. Directional Consistency: reliable descriptors should have higher cosine similarity with the objects global feature.

2. Internal Compactness: good descriptors should be generated by compact multi-view I2-normalized features. Its I2-norm indicates this compactness.

$$\omega^{\mathbf{d}} = \mathbf{d} \cdot \frac{\bar{\mathbf{v}}^{S_i}}{||\bar{\mathbf{v}}^{S_i}||_2}$$

$$= \underbrace{\frac{\mathbf{d}}{||\mathbf{d}||_2} \cdot \frac{\bar{\mathbf{v}}^{S_i}}{||\bar{\mathbf{v}}^{S_i}||_2}}_{\text{(i) Directional Consistency}} \times \underbrace{\|\mathbf{d}\|_2}_{\text{(ii) Internal Compactness}}$$

During inference, given the text prompt q, the highest weighted relevance score of the object is regarded as its final score:

$$\mathtt{REL}(\mathcal{G}^{\mathcal{S}_i}, \mathbf{q}) = \max_{\mathbf{d} \in \mathcal{D}^{\mathcal{G}^{\mathcal{S}_i}}} \omega^{\mathbf{d}} \cdot \mathtt{Rel}(\mathbf{d}, \mathbf{q}).$$

Quantitative Results

Results on the **LERF-OVS** dataset

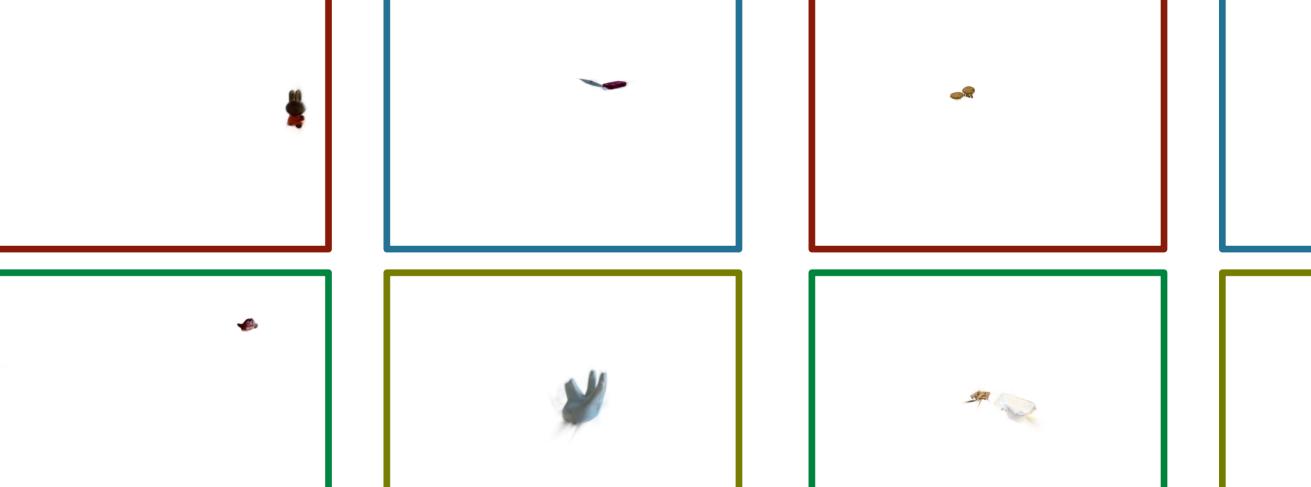
(* denotes concurrent preprints)

Jnder the same experiment setting, LaGa surpasses previous method for +18.7% mloU.

	METHODS	F.	T.	R.	W.	MEAN
2D	LSEG	7.6	21.7	7.0	29.9	16.6
	LERF	38.6	45.0	28.2	37.9	37.4
	LEGAUSSIANS	60.3	44.5	52.6	41.4	46.9
	LANGSPLAT	44.7	65.1	51.2	44.5	51.4
	N2F2	47.0	69.2	56.6	47.9	54.4
	OCCAMLGS*	58.6	70.2	51.0	65.3	61.3
	VLGS*	58.1	73.5	61.4	54.8	62.0
3D	OpenGaussian [†]	39.3	60.4	31.0	22.7	38.4
	$SAGA^{\ddagger}$	36.2	19.3	53.1	14.4	30.7
	LANGSPLAT [‡]	25.9	35.6	29.3	33.5	31.1
	LEGAUSSIANS [‡]	31.2	34.5	17.6	17.3	25.2
	OpenGaussian [‡]	61.1	59.1	29.2	31.9	45.3
	SUPERGSEG*	43.7	55.3	18.1	26.7	35.9
	LaGa (ours)	64.1	70.9	55.6	65.6	64.0

'2D' denotes conducting segmentation on rendered feature map. '3D' denotes conduct 3D segmentation then rendering the results to different views

Qualitative Results


Results on the LERF-OVS dataset

Text Prompts: "Miffy "Spatula" "Pirate hat"

"Paper napkin" "Apple"

Results on the 3D-OVS dataset

Conclusion

This paper investigate the view-dependency of multi-view semantics in 3D objects—an issue ignored by prior methods. We propose **LaGa**, which decomposes scenes into 3D objects and gathers their multi-view semantics adaptively. Extensive experiments demonstrate its effectiveness.