

On Temperarure Scaling and Conformal Prediction of Deep Classifiers

Lahav Dabah, Tom Tirer ICML 2025

Uncertainty Quantification

Quantifying molel's uncertainty is critical, especially in high stakes applications.

Two main used methods:

- 1. Calibration
- 2. Conformal Prediction

Temperature Scaling Calibration

Adjusts confidence scores to better match actual correctness probabilities.

- Divide the model's logits by a scalar named temperature
- Optimize the temperature to improve calibration

Conformal Prediction

Key Properties

- Works with any model (black-box access)
- Acts as a post-processing step

Key Idea

Outputs a **set of possible classes** that is guaranteed to contain the true label with a user-defined confidence level.

Evaluating Conformal Prediction?

- 1. AvgSize average size of prediction sets
- 2. TopCovGap worst-case gap in coverage across classes.

*Note the for both metrics – the lower the better

Temperature Scaling Calibration Before Conformal Prediction?

We applied **Temperature Scaling Calibration** before running Conformal Prediction.

Table 1. Prediction Set Size. AvgSize metric along with T^* and accuracy for dataset-model pairs using LAC, APS, and RAPS algorithms with $\alpha = 0.1$, CP set size 10%, pre- and post-TS calibration.

		Accura	acy(%)		AvgSize	e	AvgSize after TS			
Dataset-Model	$\mid T^* \mid$	Top-1	Top-5	LAC	APS	RAPS	LAC	APS	RAPS	
ImageNet, ViT-B/16	1.180	83.9	97.0	2.22	10.10	1.93	2.23	19.27	2.34	
CIFAR-100, ResNet50	1.524	80.9	95.4	1.62	5.31	2.88	1.57	9.14	4.96	

Table 2. Coverage Metrics. MarCovGap and TopCovGap metrics for dataset-model pairs using LAC, APS, and RAPS algorithms with $\alpha = 0.1$, CP set size 10%, pre- and post-TS calibration.

	MarCovGap(%)			MarCovGap TS(%)			TopCovGap(%)			TopCovGap TS(%)		
Dataset-Model	LAC	APS	RAPS	LAC	APS	RAPS	LAC	APS	RAPS	LAC	APS	RAPS
ImageNet, ViT-B/16	0	0	0	0.1	0.1	0	24.8	14.2	14.7	24.9	12.2	12.5
CIFAR-100, ResNet50	0.1	0	0	0	0.1	0	13.9	12.6	11.7	12.9	9.0	7.9

Temperature Scaling **Before** Conformal Prediction?

We applied **Temperature Scaling** with a range of temperatures **before** running Conformal Prediction.

ImageNet, ViT

CIFAR-100, DenseNet121

Temperature Scaling **Before** Conformal Prediction?

We applied **Temperature Scaling** with a range of temperatures **before** running Conformal Prediction.

- Adaptive CP methods show similar patterns across all datasets:
 - AvgSize rises, peaks, then declines.
 - TopCovGap drops, reaches a minimum, then increases.
- trade-off between set size and conditional coverage tunable via T
- We developed a mathematical theory that explains this non-monotonic effect.

ImageNet, ViT

CIFAR-100, DenseNet121

Practical Guidelines to Practitioners

- T* for calibration
- \widehat{T} for controlloing CP trade-off

How to calculate \hat{T} ?

- Previous AvgSize/TopCovGap curves used large evaluation sets and 100 trials — not practical in real-world use.
- We suggest using evaluation set for choosing \hat{T} , without violating exchangeability.
- We empirically show that using $n_{eval} \approx n_{cal}$ in a single trial leads to good approximation of \hat{T} .

Practical Guidelines to Practitioners

Prioritize prediction set sizes:

Prioritize conditional coverage:

use
$$\widehat{T} \to 0$$

use
$$\widehat{T} \to T_c$$

Thank you for your attention!

For more details and experiments, check out our paper and code:

