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== (Conclusion

We need a theoretical framework to help us
understand LLM behaviors 1n fine-tuning and
assist to selection models.
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Problem Formulation

LLM Selection in Resource-Constrained Scenarios: In the context of LLM selection, we
aim to identify the optimal model from a set of candidate models for specific tasks under
resource-constrained scenarios. Without loss of generalization, we denote S as training dataset
from D, and M = {m4, m,, ..., my} as a set of candidate models. For each model m;, there is
associated with a feature vector Xx; representing its characteristics (e.g., model size,
architecture, training data)

Given: (1) Limited training data S; (2) A set of candidate LLMs M = {m{, mj, ..., my} with
their corresponding feature vectors x.
Objective: The optimal model m* € M on S that has the best performance.
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Our theoretical analysis successfully unveils the phases transition during Fine-tuning!
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Proposed Framework

We propose LENSLLM, a Hessian-aware rectified scaling model:

L) =reo+prtE

where (a) F (0, t) is the adapted NTK-based test loss function on transformer,
(b) D is the number of training data,

(¢) B denotes the learning difficulty,

(d) B adjusts the initial test loss,

(e) E denotes the optimal loss of the model given an infinite amount of data.

Model 1 e .
[‘Ci‘ Predicted Loss Rank models Ranked 1 Model
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Experiments

More Accurate Model Selection
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Experiments
More Efficient Model Selection
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Summary

Key Contributions:

1. We propose a first-principled Hessian-based PAC-Bayes framework

2. We introduce a more effective and efficient model LENSLLM

3. Solid method and Comprehensive evaluation
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